
DroidPro: An AOTC-based Bytecode-Hiding
Scheme for Packing the Android Applications

1st Judong Bao
Peking University

Beijing, China

baojudong@pku.edu.cn

2nd Yongqiang He
Ardsec Company
Beijing, China

heyongqiang@ardsec.com

3rdWeiping Wen*
Peking University

Beijing, China

weipingwen@ss.pku.edu.cn

Abstract—Android is an open source mobile operating system
represented by the Open Handset Alliance (OHA), developed
by Google and other organizations since 2007, which has taken
up most of the market share of smart devices. However, the
applications on the platform are facing the increasingly serious
security threat. Although the Android system itself provides a
set of security mechanism to protect the safety of the system and
applications, there are still many security risks. In order to hide
the vulnerability of the applications and prevent the malicious
users from tampering the apps, multiple anti-analysis methods
have been applied by many Android packers to consolidate the
apps. Bytecode-hiding is one of the most effective anti-analysis
method, which can extract some bytecode from the Dex files
and hide them from the vision of malicious analysts. Mostly,
the hidden bytecode was encrypted, which can be recovered
in runtime. But the conventional bytecode-hiding methods are
always low-efficient and unsafe on some occasions, where the
hidden bytecode can be recovered by the malicious analysts in
some way. In this paper, we propose a bytecode-hiding scheme
based on Ahead-Of-Time (AOT) compilation, called DroidPro,
which can compile some chosen bytecode of Dex files of apps to
native code in ahead-of-time that will be much harder to reverse.
In our experiments, the apps packed by the packer associated
with our bytecode-hiding scheme are more efficient and safer
than other packers that use other bytecode-hiding schemes.

Index Terms—Ahead-of-time compiler, reverse engineering,
packer, Dalvik bytecode, code auditing, code profiling.

I. INTRODUCTION

Android has occupied about 85.9% market share in the

market of smartphone operating system in 2017 [3], [9]. Low

barriers for entry of application developers increase the secu-

rity risk for end users [7]. To protect apps from being tampered

and reverse engineered, a number of app packing services

(or packers) emerge [8], which prevent others from obtaining

real code by concealing and obfuscating the real code (i.e.,

Dex bytecode) [25]. Currently, these packing services have

successfully helped countless app developers protect their apps

from maliciously reverse engineering and tampering. However,

the efforts to crack the packed apps never stop. The unpacking

tools to thwart the performance of various app packers also

never stop evolving. Some novel unpacking approaches have

been proposed, which can efficiently facilitate the analysis

towards apps for reverse engineering or recovering the original

Dex bytecode from packed apps [25], [26], [27]. Both the

packers and the unpackers are evolving rapidly. Therefore, the

arms race between packers and unpackers has become fiercer

and fiercer and never ends.

Current packers usually involve a variety of defense mea-

sures to block analysis for reverse-engineering. Generally, the

anti-analysis measures those packers employ can be classified

into three categories. The first category of anti-analysis defense

measures involve functions that check the static and dynamic

integrity of the app (i.e., whether the app is patched or

injected with debugging routines). These measures can be

easily circumvented if analysts know the tricks beforehand.

The second category of anti-analysis measures involve source

code level obfuscation, which requires the source code to

employ the protection. The third category, which is most

complex and most reliable currently, involves bytecode hiding.

These measures try to conceal the information of bytecode in

the Dex files [6].

Considering the difficulty of using Dex code to crack

down on Android, hiding the information of bytecode of

Dex files has become the main measure of most app packers

to hindering reverse engineering. Metadata modification and

Dex encryption are currently the main measures to implement

bytecode hiding for Dex files. Generally, as a defense measure

modifying metadata is really tricky, which does not actually

conceal the bytecode information. However, these defenses

won’t be available anymore, due to the stricter and stricter

verification for Dex format. In fact, Dex encryption has just

been the mainly effective measure.

Packers prefer to employ Dex encryption techniques, which

need release the original bytecode in runtime. Packers per-

form a full-code releasing or incremental code releasing for

recovering original bytecode. Similar to classic code packers

on commodity desktop platforms, Dex encryption scheme

generally depends on a decrypting stub that is responsible

for decryption work at runtime. Packers always place the

decrypting stub in native code part of a protected app as

an initializer. The encrypted bytecode is first recovered by

the decrypting stub, and then the Android VM will load and

execute the decrypted bytecode.

Generally, the current bytecode hiding schemes are mostly

based on encrypting bytecode of Dex files and decrypting it

to original states at runtime. In these schemes the encrypted

bytecode of the Dex files will always be recovered to the

original state at some moment, which is easily applied by

624

2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th
IEEE International Conference On Big Data Science And Engineering

2324-9013/18/31.00 ©2018 IEEE
DOI 10.1109/TrustCom/BigDataSE.2018.00093

Authorized licensed use limited to: Peking University. Downloaded on March 14,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

the malicious users to reverse-engineer the applications. In

fact, as the limited difficulty of cracking down Dex bytecode

on Android, more and more developers are turning to C/C++

code for core code writing. Moreover, several ahead-of-time

compilers have been proposed to make the improvement of

the performance for the execution of Android devices or Java

language on embedded platforms [14], [18], [19], [21]. In view

of this, we got the idea that we can design an ahead-of-time

compiler (AOTC) to compile the bytecode selectively extracted

from Dex files to implement an AOTC based bytecode-hiding

scheme.

In this paper, an Ahead-Of-Time compiler (AOTC) based

bytecode-hiding scheme called DroidPro is proposed, which

can compile directly the Dex bytecode to native code that can

run smoothly on devices without recovering the original Dex

bytecode that need run through the interpretation and Just-

in-Time Compilation (JITC) of the Android virtual machine

before. In DroidPro, we translate the bytecode of some filtered

methods used by apps to intermediate representation (IR) of

LLVM [12], which then can be directly translated to native

code (i.e., so library). The generated native code (i.e., so

library) and new Dex files (i.e., remaining Dex file after

being extracted) are repackaged and packed to a new Apk

file. Certainly the generated native code and new Dex files

can be specially packed further. Compared with current main

bytecode-hiding scheme (i.e., Dex encryption), our DroidPro

can make the native code run directly in devices without

recovering. Meanwhile the Android system can eliminate the

overhead for recovering the original Dex, and also can make

part of Dex bytecode disappear all the runtime, which means

that the malicious users cannot get the original bytecode

through traditional unpacking approaches against Dex file.

The rest of this paper is organized as follows. In Section

II, the overview for the DroidPro framework is presented.

The method filter mechanism is given in Section III. The

detail of Dex-to-IR translation and what additional post-

processing measures are involved in the DroidPro framework

are described in Section IV. Experimental processes and results

are given in Section V. In Section VI, the related work is given.

At last the paper is concluded in Section VII.

II. OVERVIEW

A. DroidPro Architecture

The DroidPro framework consists of three main com-

ponents, a method filter module, a Ahead-of-Time com-

piler(AOTC), and a bridge module which is native library. The

method filter module is applied to filter the methods that are

suitable for extraction to be hidden or be kept original state.

The AOTC module is used to translate qualified methods for

hiding into LLVM IR, compile the IR to native code, and link

the generated native code with the bridge module, which is

a library implemented with Java Native Interface (JNI) and

is used to guarantee the contact between native side and the

remaining bytecode in Dex.

B. The Execution Flow of DroidPro

The execution flow of DroidPro is illustrated in Fig. 1. At

the beginning, the method filter module is designed to help

extracting bytecode of methods within Dex files. Methods

within an application will be divided into two categories and

respectively put into two lists(hiding and remaining list). For

methods in the hiding list, the bytecodes of them are fed into

the AOTC module as input. After the compilation is finished,

DroidPro will modify the bytecode of the original Dex files

by evacuating the original methods’ body and appending a

native modifier to the methods’ headers, so that any callers

that invoke these methods can call the generated native code

generated. At last procedure, the modified Dex files and

the generated native code are built into a new application

package (i.e., apk). Moreover, the DroidPro can coexist with

most other pack technologies, which means that the newly

generated application can be packed continuously with other

software protection technologies including other bytecode-

hiding themes. The applications packed by multiple defence

measures certainly will be much safer.

III. THE METHOD FILTER MODULE

Because if the Dex bytecode was compiled to native code

entirely, the generated new Apk package will extremely ex-

panded in size, DroidPro does not try to compile the entire Dex

bytecode. To balance the performances of security, execution

and space, DroidPro instead just compile partial bytecode of

Dex file. By exploiting the capability of Java Native Interface

(JNI) and Java reflection techniques to support the mutual

invocation between the Dex side and native side within one

application, the newly application generated by DroidPro can

not only keep the functions of the original, but also can possess

better safety performance and moderate space performance.

Therefore, the objective of the method filter module within

DroidPro framework is to classify methods of an app into

hiding list or remaining list, which contains the hidden or the

left methods respectively.

Fig. 1. The DroidPro Architecture.

625

Authorized licensed use limited to: Peking University. Downloaded on March 14,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

Since the system or external dependency libraries don’t

need be packed, the opportunity of compilation resides in

the bytecode that represents user defined methods. To filter

proper methods, a method filter mechanism must be applied

to provide the above two lists. But because of the difference

of the application scenarios in practice, the principles and

strategies of filtering methods can be various. Meanwhile

the current defense techniques of packers always have some

defects that make against the comprehensive performance

of packed applications. Even our DroidPro accompanies a

size issue that the size of the native code generated from

Dex bytecode will expand several dozen times than original

bytecode. Considering the uncertainty of method significance

in practice, we are going to reference current technologies

about the security detection of applications to help filtering

appropriate methods. Meanwhile, we also take the execution

performance and robustness of the packed applications into

consideration in the method filter stage of packing.

A variety of code detection technologies have been pro-

posed, including code auditing like [24] and malware detection

[22]. Our case is that we want to hide the methods, which

may cause vulnerability of the applications. So we used code

auditing tools as the main part of the filter module of DroidPro,

and also referenced the method filter mechanism of several

existent AOTCs [20], [13], [15] for Android applications. At

last we designed our current method filtering mechanism based

on the code auditing and profiling of applications, which

not only cares the security performance, also cares other

performances including execution, space,etc.

A. The Auditing and Profiling Tools

In DroidPro, we employ auditing tool and profiling tool,

which are applied to collect the information about the vul-

nerability and the execution performance of an application

respectively, to help generating the profile data of Dex files.

By the generated profile data we create the hiding list and

remaining list.

The auditing tool is used to collect the information about

code defects in Dex especially some weaknesses about data

leakage. Our main intention is to get the positions of code

defects in Dex, and by concealing the key points of code in

control and data flow, the difficulty for reverse engineering

to the applications packed by DroidPro will increase greatly.

To counter software vulnerabilities, the patching in source

code level is the best way, but that is not the duty of

packing service. However, with the help of auditing tools,

we can hide the methods associated with vulnerabilities and

conceal the logic of vulnerabilities towards malicious users

to protect the applications better.The profiling tool is used to

collect the runtime execution information of methods in an

application, including the execution time of each method, the

call graph, the frequency of invocation to every method, and

the execution time percentage of child methods, which will be

recursively accumulated and synthetically considered to calcu-

late the time-consuming values of methods. By comparing all

the values about execution information of methods with the

predefined thresholds, we can get a list of the methods with

high execution overhead.

By filtering the methods associated with vulnerability and

the methods with high execution overhead to hiding list and

compiling them to native code, we can make the packed

apps with superior security and execution performance to

the original state. Currently, we employ AppAudit [23] and

Traceview [5] as the auditing tool and the profiling tool

respectively.

B. Invocation Overhead Avoidance

Through the preliminary processes of auditing tool and

profiling tool, we can get the basic profiled data, which can

generate roughly hiding list and remaining list. That means

some methods may be compiled to native code or hidden to

native mode. Simultaneously, the number of JNI invocations

of every method can also be determined. If the number of

JNI invocation is too high in one method, the compilation for

that method will greatly increase the execution overhead of

that method. So if a method with very large number of JNI

invocations has been put into hiding list for its high execution

overhead, it should be taken out from hiding list and put into

the remaining list. The threshold is currently set based on the

feedback from a set of performance experiments. This filter

mechanism can take effect and helps minimizing the number of

methods with frequent JNI invocation in hiding list. However,

if the methods that are put into hiding list for security reasons,

they should be remained there, because protecting application

is the main purpose of DroidPro.

C. Method Filter Mechanism

The main idea of the current method filter mechanism is to

first filter the methods associated with some vulnerabilities into

the hiding list for hiding the bytecode through compilation,

and then filter some methods for trying best to improve

the execution performance. The main processes of the filter

module is to collect the user-defined methods correlated with

some vulnerabilities and with high time consuming values in

the entire execution-flow and to put corresponding methods

to the hiding list. The checking flow is organized into the

following steps:

• Step 1: Through the vulnerability information collected

by the auditing tool, we directly select the methods in Dex

files which may take effect in the process of exploiting

the vulnerabilities to the hiding list, especially some

vulnerabilities about data transferring, database operation

and some check logic in code. Go to step 2.

• Step 2: Calculate the result of the self-code execution rate

multiply the invocation frequency of every method in Dex

file according to the profiled data from the profiling tool

to get the time-consuming value of that method. Check

the time-consuming values of all user-defined methods

and get the time-consuming values of every top-level

method by accumulating the time-consuming values of

their child methods recursively. If the time-consuming

626

Authorized licensed use limited to: Peking University. Downloaded on March 14,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

values of a specific method are over predefined values,

put the method into the candidate hiding list. Go to step 3.

• Step 3: Adjust the hiding list and the remaining list

to avoid compiling the methods that may cause extra

vulnerabilities or extra overhead due to their compilation.

After that, we get the final hiding list and remaining list.

Through this method filter mechanism, a method which may

cause vulnerability and spend a lot of time on its self code

execution will be put into the hiding list.

D. Classifying Methods

Based on the description above, we have built a pretty filter

module to classify the methods that are suitable for hiding

list or remaining list respectively. Fig. 2 shows how the filter

module works. First, based on security auditing result, we

filter some methods into the hiding list. Then, to hide as

much bytecode of Dex files to native code as possible and

improve performance as much as possible, we analyze the rest

of methods in Dex files with the profiling tools and select some

other methods to the hiding list considering those methods can

bring beneficial effect for overall performance improvement.

Based on the two lists generated from the filter module, we can

continue to the latter compilation and some post-processing

works. In the future, we will involve multiple filter process,

which means we will do the filter work several times with

different auditing tools and profiling tools. By this we can

avoid the emergence of new security issues and performance

issues that may appear after one round of filter and compilation

work.

Fig. 2. The mechanism to classify methods

IV. COMPILATION AND OPTIMIZATION

In this section, we will detail how to extract methods from

Dex files and translate the extracted bytecode to native style. In

addition, some optimizations and post-processings we conduct

in DroidPro are also given.

A. Dex-to-IR Convertion

The main work of AOTC module is to parse Dex files

to intermediate represent (IR) of Low-Level Virtual Machine

(LLVM) [12], and then translate the IR to native code. This

work is based on the ANTLR [16] that can generate the parser

to translate the preprocessed Dex bytecode to the LLVM IR,

Clang [1] and LLVM that can cooperate to translate the IR and

C code to native code. The translation processes are shown in

Fig. 3.

Fig. 3. The Dex-to-IR compilation flow of DroidPro.

1) Dex Code Preprocessing: Through the preprocessing,

the Dex files are disassembled into a human-readable text

file (i.e., smali file) by backsmali [11] and Dexdump. We

applied both tools to collect all the necessary information for

the conversion of Dex bytecode. The JNI based bridge module,

which is library responsible for bridging Android VM (Dalvik

or ART) and native code, and can be generated according

to above information. The object of this phase is to better

preprocess the Dex file to parse it into the LLVM IR. There are

another two works included in this step. The first is to build

function call cycles of the methods to compile together by

modifying the return instructions of these methods. This can

reduce the overhead of procedure calls among native methods

that transfer parameters and return results by special stacks

conventionally. The second is to generate auxiliary information

for the next-step compilation by inserting annotations.

By chaining the native methods we can make the some

parameter passing and result returning of native methods carry

on in pure native mode. We can manipulate the invocation

and return instructions of the caller and callee methods. By

analyzing the invocation relation of the methods in the hiding

list, we get all the call pairs of parent methods and child

methods in hiding list. In the native code of parent method,

we can modify the indirect invocation instructions for child

methods to direct invocation instructions to the native code of

child methods, which means that the invocation doesn’t need

traverse the VM mode. This measure can help avoid frequent

switching back and forth between the native mode and Android

VM mode. More details will be provided in the later section.

627

Authorized licensed use limited to: Peking University. Downloaded on March 14,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

Gathering and recording information about every instruction

is beneficial to the latter compilation work, especially useful

to the semantic analysis of the bytecode. We can create anno-

tations for fields, methods, and instructions of the bytecode in

text files. With the help of the annotations we can then generate

the IR from preprocessed bytecode and create the bridge mod-

ule of the DroidPro framework. Using dexdump we can get all

main information of class, field, method and baksmali can give

the detail of every instruction. Table I gives some examples

of annotations we use. In Table I, the FunctionType means a

method’s parameter types and return type to help constructing

a method’s parameters and return value from virtual registers

of Dex instructions to local variables of LLVM IR. For exam-

ple, FunctionType(DD)Ljava/lang/Double; indicates that the a

function which is going to be compiled has two parameters of

double type and returns a Ljava/lang/Double;type value. The

item ”FieldType” informs the type of one field, the type is

”Ljava/lang/String;” in this example. The Lineitem records one

bytecode’s line number. The Instruction represents that it is to

invoke a static function which have two int type parameters

and return a int type result.

TABLE I. Examples of annotation

Item Value
FunctionType (DD)Ljava/lang/Double;

FieldType Ljava/lang/String;
Line .line 543

Instruction invoke-static {v2,v3}, Lcom/examples/Test;->mul(II)I;

2) Handling Additional Issues: For normal execution in-

structions we take the way of translating the bytecode of Dex

executables to LLVM IR, by which we can get much ben-

efit from LLVM’s mature compiler infrastructure. However,

LLVM IR cannot directly invoke Java methods and fields, but

they can invoke C code smoothly, so the logic in native level in

DroidPro to process mutual invocations between native code

and Android VM is realized in C code by using JNI. Based

on above, there exist several issues in the translation process

between native mode and Android VM mode.

One issue is that the generated native code must keep the

language features of Java. Java, as an object-oriented language,

has many object-oriented features, such as instance creation,

virtual method, function overloading, etc. When converting to

C or IR, these features should be kept. Fortunately, most these

features are implemented originally by JNI in Java system.

So that is easy to implement them with JNI by ourselves,

we can implement these feature in translated IR and C code.

For the function loading mechanism in Java, different from

Java, in C language, functions can be distinguish by name or

scope. So for function overloading, we can implement that

by identifying different overloading functions with different

names. For example, in Java class ”com.test.DemoClazz”,

we have overloading functions, ”void func(int)” and ”void

func(int, int)”, in C level we can implement them by giving

them different names.

Fig. 4. Virtual registers of Dex bytecode

Fig. 5. Example code of variable renaming in IR code

The other one issue is that the bytecode instructions of Dex

are based on virtual register, which is basically non-typed like

the general purpose register in assembly language, it can store

data of any type. From Fig. 4, In different parts of one piece

of Dex bytecode, the register v3 can store different data types,

it is first used to store a java.lang.Integer object, then holds a

integer value, and last it is loaded a java.io.PrintStream object

value. Similar to the bytecode of Dex, the LLVM IR conduct

its local variables as virtual register, but the variables of LLVM

IR are strongly-typed. So we must carefully handle the type

conversion of the variable that is mapped to a virtual register

of Dex bytecode, when that virtual register is referenced as

another type.

LLVM IR is strong typed, which is very different from the

Dex byte code. We must carefully handle the type change of

variables representing a virtual register of Dex bytecode in its

every use. With the help of type information annotations from

the preprocessing of Dex code, we can use new temporary

variables with new types to help operating the memory space

that is allocated to represent the virtual register. In Fig. 5,

the piece generated code of IR shows that how the memory

space representing the virtual register v5 hold different types

of data, just like it in Dex bytecode. Obviously, in every the

virtual register accessing with different types in Dex bytecode,

the memory space representing the virtual register is labeled

by different name in LLVM IR.

3) Code Generation: After the preprocessing shown in

Fig. 3, the Dex files are then translated to the human-readable

text form intermediate representation (IR) (i.e., .ll files) of the

LLVM compiler infrastructure, and the text form intermediate

representation is finally translated into a shared library with

the clang [1] front-end and LLVM back-end. Moreover, we

have developed some special interfaces to handle the accesses

628

Authorized licensed use limited to: Peking University. Downloaded on March 14,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

from the native side to the Android VM’s resources, and

packaged them into the bridge module as a library, which will

be linked with the generated native code finally. This library

will guarantee the basic operations of apps such as method

invocation, instance creation, field accessing and so on.

B. Optimization

Current packers are all the composite style with a bunch

of measures for anti-analysis defenses that all will bring

additional overhead for the execution of the applications.

So the overhead issue must be cared about discreetly and

the optimization must be done. With JNI, the native mode

and the Android VM can interact with each other. However,

JNI suffers from time and space overhead just like other

mechanisms of supporting interoperability. Generally, we can

classify the reasons of JNI overhead to two categories, one is

call-out operation and the other one is call-back operation. The

call-out operations are adopted by Android VM to invoke the

native methods. Contrarily, the native side can adopt the call-

back operations to access the resources of Android system.

Compared to the call-out operations, the call-back opera-

tions involve more significant overhead, because they always

need perform indirect-jump by referencing the JNI environ-

ment variable, which can cause extra overhead that call-out

operations doesn’t need. Besides, a call-back operation need

take a large amount of time to perform constant pooling in

advance for the need of context-switches. Table II shows the

comparison of the average execution time between a call-back

operation and a call-out operation got by performing each

operation 1000 times.

As we can see, the gap between call-out and call-back op-

erations in performance is so wide that some optimizations to

call-back operations are strongly demanded. Since in packing

work there is no need to modify Android’s framework, we

focus on reducing the call-back overhead of generated native

code to improve the performance of the new applications.

TABLE II. The time comparison between 1000 call-out and

call-back operations

Native Java
Non-static field 126.2 ms 11.2 ms

Static field 107.6 ms 5.2 ms
Non-static method 41.8 ms 2.5 ms

Static method 123.4 ms 32.1 ms

1) Resolution in Ahead of Time: Traditionally, the resources

access from the native side such as field accessing and method

invocation are realized with Java reflection mechanism, which

are very slow usually. To avoid it, some types of instructions

such as field accessing and method invocation are organized

with a reference in symbolic forms. The reference is a item

corresponding to offset/index of the symbolic forms. This

conversion process is usually called constant pool resolution.

As all the works in the execution flow of DroidPro are

conducted ahead of time, we generate the constant pool

resolution form ahead of time, which can eliminate the runtime

overhead of constant pool resolution like Android system. For

doing that work, dexopt [4] are introduced. Normally, when

an app is installed, dexopt is used to generate the optimized

Dex file. The Dex bytecode after optimization by this tool is

called ODEX. Some constant pool referencing instructions in

ODEX are replaced by a quicker reference, which reference

the constant through offsets generated based on static linking.

With the information got by parsing ODEX files, we can

significantly speed up call-back operations of the generated

native code. However, this does not contain static references

because the offsets of static references are corresponding to

the address from where the class is loaded.

2) Caching: For the static field accessing and static method

invocation, there are no convenient measures like ODEX,

like the ahead of time resolution from ODEX, which is only

appropriate to the object instance. Therefore, we introduce a

caching mechanism for improving the performance of static

call-backs. To accelerate the speed of static field accessing

and method invocation and reduce corresponding referencing

overhead, the references of the fields and methods are cached

at the native side. A hash table is employed to record the

methods/fields based on their names. The field accessing and

method invocation can be speed up by directly looking up

the hash table. However, this mechanism also may come with

some time and space overhead, it still can bring more than

five times performance improvement over the original call-

back operation on average.

V. EXPERIMENT

To illustrate and evaluate the comprehensive performance of

our DroidPro framework on app protection, 10 unpacked app

samples are specially made to test the security performance

(i.e., compilation functionality), 1000 random unpacked apps

are download to test the reliability and 10 of them are used

to test space performance, and two benchmark applications,

CaffeineMark 3.0 [17] and the BenchmarkPi [10] are used to

test execution performance. The reason to specially make app

samples is that we can design the composition of methods

of Dex files, then in function test we can designate specific

methods to be compiled by just tweaking the method filter

module of DroidPro. Our experimental environment is based

on Redmi Note 2 device running on Android 5.0.2.

A. Function Test

Hiding the extracted bytecode of the Dex file is the basic

function of our tool, DroidPro. We designate some methods in

advance, then extract and compile them to native code. Finally,

we run the new apps in device to test whether the new app

can run normally. We can decompile respectively the original

and DroidPro-packed packages of apps to see some result.

In Fig. 6, we can see one example that the method body of

function add in Fig. 6 (a) has disappeared in Fig. 6 (b). The

original apps are packed to new apps whose hidden methods

are attached the reserved word native.

Any user-defined method we designated in advance in 10

app samples can be hidden (or compiled) in test and all the new

629

Authorized licensed use limited to: Peking University. Downloaded on March 14,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

(a) The original method body of function add

(b) The method body of function add after packing

Fig. 6. The change of method body

apps can run normally. In test, the hidden (or compiled) byte-

code cannot be recovered by traditional unpacking measures.

We can also designate the methods to be hidden in practice

by tweaking the method filter mechanism, and certainly the

new apps packed by DroidPro can be continuously packed by

other ant-analysis measures for anti-reverse.

1000 app samples are tested by Monkey [2] in respectively

original state and packed states. Table III show that there are

973 app samples packed by DroidPro can still run normally,

and 27 samples meet a crash in 1000 unpacked app samples.

In addition, 1000 packed app samples are not unpacked by

known unpacking tools, such as AppSpear or DexHunter etc.

DroidPro can effectively sabotage the process of them. Any-

way the robustness and the safety performance of DroidPro is

pretty excellent.

TABLE III. The result of robustness test

Normal Crash
Packed 973 27
Original 1000 0

B. Performance Test

To exactly evaluate the execution performance of DroidPro,

two benchmark programs, CaffeineMark 3.0 [17] and the

BenchmarkPi [10], are employed as benchmarks. The two

applications can be directly downloaded from their own web

pages.

1) Testing of CaffeineMark 3.0: CaffeineMark 3.0 contains

a series of test items, and every its score represents the count

of Java instructions executed per second in that item. Table IV

shows the description of the test items involved by Caffeine-

Mark 3.0. Fig. 7 gives the test results about performances of

CaffeineMark 3.0. As shown in Fig. 7, the scores by using

DroidPro are much better than the original executions, in most

test items except for the String test. Overall, the application

packed by DroidPro has the best performance. The anomaly

result in the String test is mainly related to the frequent JNI

invocations.

TABLE IV. Items of CaffeineMark 3.0

Item Description
Sieve The classic sieve of Eratosthenes finds prime num-

bers.
Loop The loop test uses sorting and sequence generation

as to measure compiler optimization of loops.
Logic Tests the speed with which the virtual machine

executes decision-making instructions.
Method The Method test executes recursive function calls to

see how well the VM handles method calls.
Float Simulates a 3D rotation of objects around a point
String Operation of basic string

Fig. 7. CaffeineMark 3.0 scores comparison

2) Testing of BenchmarkPi: The BenchmarkPi is often used

to test a device by calculating the value of Pi, and is a excellent

tool to test the performance of a CPU. In this test, we use

DroidPro to compile the methods that are responsible for the

main workflow of BenchmarkPi. The performance results are

shown in Fig. 8. We can see that the execution of BenchmarkPi

packed by DroidPro is about two times faster than that is

original.

Fig. 8. Performance comparison of BenchmarkPi

3) Size Test: From 973 app samples that can run normally

after packing we randomly choose 10 samples per 20MB

interval, whose overall size scope is 0-200MB. The tests are

conducted with the method filter module in Section 3. By the

Table V and Fig. 9, we can see the size change of packages

between the original and packed applications. The data is given

in MB except last column that show that the weighted value

of average increased size of every range. The weighted value

of average increase size is about 0.38, which means the size

630

Authorized licensed use limited to: Peking University. Downloaded on March 14,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

of apps packed by DroidPro is 0.38 larger than the original.

TABLE V. The result of size test

Average Size Average Increased Value
Range Original Packed Value Weighted
0-20 15.62 21.47 5.85 0.37
20-40 19.65 27.10 7.45 0.38
40-60 52.67 72.66 19.99 0.38
60-80 72.28 98.99 26.71 0.37
80-100 93.53 129.06 35.53 0.39
100-120 111.24 152.36 41.12 0.37
120-140 122.88 171.48 48.60 0.41
140-160 161.20 219.00 57.80 0.36
160-180 185.50 249.91 64.41 0.35
180-200 169.60 241.27 71.67 0.42

Fig. 9. The increased size per MB

Overall, the comparison described above indicate that the

AOTC based bytecode-hiding tool, DroidPro, can effectively

hide the extracted bytecode for Android applications. Though

the experiment doesnt integrate other anti-analysis measures

to pack the app, it still has the basic function of AOTC based

bytecode hiding that the generated native code will execute

without translating back to Dex bytecode. The filtered byte-

code of the original application has just been hidden in native

code style. The experiments above have demonstrated that the

scheme we proposed almost has improved the comprehensive

performance of the applications rather than bring the overhead

in order to recover the hidden Dex bytecode, there almost is

no any other extra overhead except of the normal execution

of the application, it has come over the shortcomings of other

bytecode-hiding schemes mentioned earlier in this paper.

VI. RELATED WORK

There have been some researches to apply an ahead-of-

time compilation technology for Android applications to im-

prove the execution performance of apps [13], [15], [20].

Similar to other AOT compiler for Android system, DroidPro

also is method-based. Unlike other AOTC schemes, DroidPro

transforms the Dex bytecode to intermediate representation of

LLVM rather than the C code, the mature compiler infras-

tructure of LLVM give a very big help to the design and the

development of DroidPro. Finally, our is functionally different

from other AOTC schemes, our DroidPro is mainly de-signed

to hide the selected Dex bytecode to prohibit from reverse-

engineering the applications. However, the improvement of

the execution performance is just side product, and that bring

the potential for the packers associated with DroidPro to dig

more performance to consolidate apps. The bytecode hiding

schemes of current app packer services are mostly based on

hiding bytecode of Dex file that will be recovered to original

states at runtime. In those schemes the encrypted bytecode of

the Dex files will always be recovered to the original state at

some moment, which is easily applied by the malicious users

to get the original bytecode of Dex files. That is the main

difference between DroidPro and them, and also the advantage

of DroidPro over them.

VII. SUMMARY AND CONCLUSIONS

Through the above experiments the paper draw the fol-

lowing conclusion. the AOTC based bytecode-hiding scheme,

DroidPro, can extract and compile the bytecode of Dex files

to native code, therefore can protect the apps more effectively

than other packers. DroidPro has carefully minimized extra

overhead of JNI with several optimization measures such as

resolution ahead of time and caching method/field references.

In addition, DroidPro has no the overhead of decrypting that

is involved by other most packers.

Furthermore, as a unitary type measure for packing apps,

DroidPro can be used by combining with any other anti-

analysis measures of packing apps to improve the capability

to resist reverse engineering like other packers that always are

synthetical type with lots of anti-analysis measures. Droid-

Pro currently introduces the existing auditing and profiling

measures to determine which methods ought to be compiled

(or hidden) by DroidPro or be retained. The mechanism of

filtering appropriate methods can be changed according to

various needs in practice, it is also our new research direction

to develop an adaptive mechanism for filtering methods.

In summary, the main idea of DroidPro is to classify and

compile methods associated with some vulnerabilities and high

execution overhead of an Android application to native code,

and make the generated native code be called by the Dalvik

virtual machine or Android Runtime (i.e., ART) via JNI at

run time. Generally, the apps packed by DroidPro have shown

better performance than the apps packed by other packers in

experiments.

REFERENCES

[1] Clang: a C language family frontend for LLVM. http://clang.llvm.org/,
2018. [Online; accessed 15-June-2018].

[2] UI/Application Exerciser Monkey. https://developer.android.com/stud
io/test/monkey, 2018. [Online; accessed 15-June-2018].

[3] Android. Statistics & Facts. https://www.statista.com/topics/876/, 2018.
[Online; accessed 15-March-2018].

[4] Google Android. Dexopt Dexfile Optimization Tool. https://source.a
ndroid.com/devices/tech/dalvik/dex-format, 2018. [Online; accessed 15-
June-2018].

[5] Google Android. Inspect trace logs with Traceview. https://developer.
android.com/studio/profile/traceview, 2018. [Online; accessed 15-June-
2018].

631

Authorized licensed use limited to: Peking University. Downloaded on March 14,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

[6] Axelle Apvrille. Playing hide and seek with dalvik executables.
Hacktivity, Budapest, Hungary, 2013.

[7] William Enck, Damien Octeau, Patrick D McDaniel, and Swarat Chaud-
huri. A study of android application security. In USENIX security
symposium, volume 2, page 2, 2011.

[8] Gartner. Debunking Six Myths of App Wrapping. https://www.gart
ner.com/doc/3008117/debunking-myths-app-wrapping, 2018. [Online;
accessed 15-June-2018].

[9] Google. Android Developer Website. https://developer.android.com/,
2018. [Online; accessed 15-June-2018].

[10] Benchmark International. BenchmarkPi. http://www.benchmarkpi.com/,
2018. [Online; accessed 15-June-2018].

[11] JesusFreke. Smali/baksmali is an assembler/disassembler for the dex
format. https://bitbucket.org/JesusFreke/smali, 2018. [Online; accessed
15-June-2018].

[12] Chris Lattner. The LLVM Compiler Infrastructure. https://llvm.org/,
2018. [Online; accessed 15-June-2018].

[13] Yeong-Kyu Lim, Sharfudheen Parambil, Cheong-Ghil Kim, and See-
Hyung Lee. A selective ahead-of-time compiler on android device.
In Information Science and Applications (ICISA), 2012 International
Conference on, pages 1–6. IEEE, 2012.

[14] Gilles Muller, Bárbara Moura, Fabrice Bellard, and Charles Consel.
Harissa: A flexible and efficient java environment mixing bytecode and
compiled code. In COOTS, pages 1–20, 1997.

[15] Hyeong-Seok Oh, Ji Hwan Yeo, and Soo-Mook Moon. Bytecode-
to-c ahead-of-time compilation for android dalvik virtual machine.
In Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition, pages 1048–1053. EDA Consortium, 2015.

[16] Terence Parr. ANother Tool for Language Recognition. http://www.an
tlr.org/, 2018. [Online; accessed 15-June-2018].

[17] Pendragon. CaffeineMark 3.0. http://www.benchmarkhq.ru/cm30/,
2018. [Online; accessed 15-June-2018].

[18] Todd A Proebsting, Gregg M Townsend, Patrick G Bridges, John H
Hartman, Tim Newsham, and Scott A Watterson. Toba: Java for
applications-a way ahead of time (wat) compiler. In COOTS, pages
41–54, 1997.

[19] Ankush Varma and Shuvra S Bhattacharyya. Java-through-c compi-
lation: An enabling technology for java in embedded systems. In
Design, Automation and Test in Europe Conference and Exhibition,
2004. Proceedings, volume 3, pages 161–166. IEEE, 2004.

[20] Chih-Sheng Wang, Guillermo Perez, Yeh-Ching Chung, Wei-Chung
Hsu, Wei-Kuan Shih, and Hong-Rong Hsu. A method-based ahead-
of-time compiler for android applications. In Proceedings of the 14th
international conference on Compilers, architectures and synthesis for
embedded systems, pages 15–24. ACM, 2011.

[21] Michael Weiss, François De Ferriere, Bertrand Delsart, Christian Fabre,
Frederick Hirsch, E Andrew Johnson, Vania Joloboff, Fred Roy, Fridtjof
Siebert, and Xavier Spengler. Turboj, a java bytecode-to-native compiler.
In Languages, Compilers, and Tools for Embedded Systems, pages 119–
130. Springer, 1998.

[22] WP Wen, Rui Mei, Ge Ning, and LL Wang. Malware detection
technology analysis and applied research of android platform. Journal
on Communications, 8:78–85, 2014.

[23] Mingyuan Xia. AppAudit: Uncover Hidden Data Leaks in Apps.
http://appaudit.io/, 2018. [Online; accessed 15-June-2018].

[24] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue Liu.
Effective real-time android application auditing. In Security and Privacy
(SP), 2015 IEEE Symposium on, pages 899–914. IEEE, 2015.

[25] Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu. Adaptive
unpacking of android apps. In Software Engineering (ICSE), 2017
IEEE/ACM 39th International Conference on, pages 358–369. IEEE,
2017.

[26] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Junliang Shu, Bodong Li,
Wenjun Hu, and Dawu Gu. Appspear: Bytecode decrypting and dex
reassembling for packed android malware. In International Workshop
on Recent Advances in Intrusion Detection, pages 359–381. Springer,
2015.

[27] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. Dexhunter: toward
extracting hidden code from packed android applications. In European
Symposium on Research in Computer Security, pages 293–311. Springer,
2015.

632

Authorized licensed use limited to: Peking University. Downloaded on March 14,2021 at 03:16:54 UTC from IEEE Xplore. Restrictions apply.

