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Abstract. Speech classification models are extensively utilized and sig-
nificant in various domains. However, recent research has demonstrated
their susceptibility to backdoor attacks, which can lead to security risks.
Many traditional methods based on data poisoning are prone to detection
for they involve manipulating data and labels during both the training
and inference phases. In this paper, we introduce semantic backdoor at-
tacks based on code poisoning by training the main task and backdoor
task. We propose a phoneme mixture and multiple-task learning strategy
to implement blind backdoor attacks on classification tasks. In this sce-
nario, the attacker does not need to alter the training data and ensures
the model predicts wrongly in the inference stage without poisoning the
input sample, showing great stealthiness. The phoneme mixture uses the
attacker-specific phoneme as semantic triggers and mixes it with training
speech samples, leveraging the inherent phonemes or syllables present in
the speech samples to activate the backdoor without input modification
during the inference phase. Also, the poisoning code will dynamically
pollute the training inputs. In this case, the model needs to optimize
both the main task and the backdoor task at the same time, so we use
the Multiple Gradient Decent Algorithm (MGDA) to optimize the losses
generated by these two tasks at the same time so that both tasks can
achieve higher accuracy. Our experiment shows that the accuracy of the
attack success (ASR) is close to that of poisoning-based backdoor attacks
on speech classification.

Keywords: Speech Classification Task · Semantic Backdoor Attacks ·
Code Poisoning.

1 Introduction

Speech classification tasks play a crucial role in a wide variety of domains and
are continuously evolving, including autonomous driving, smart healthcare, and
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identity authentication. To ensure the optimal performance of a speech classi-
fication model, a substantial amount of training data and a significant number
of trainable parameters are essential. However, sufficient computing power and
expensive hardware resources can be burdens for many researchers. As a re-
sult, some elect to outsource the model training process to third-party platform
providers to reduce expenses and training pressure.

Research indicates that the use of third-party platform providers in these
scenarios may introduce security vulnerabilities [1–3]. This risk stems from the
potential presence of malicious attackers within these providers, who could com-
promise the model’s predictive accuracy. Among the risks warranting attention
is the concern of backdoor attacks. During the execution of a backdoor attack,
the attacker introduces poisoned samples by embedding a specific trigger within
benign training inputs and subsequently modifies its associated label to match
a predetermined target. After training the model with both the poisoned and
benign samples concurrently, the attacker obtains a backdoored model and then
delivers it to the researchers. When testing the backdoored model, the model
outputs incorrect labels when fed with samples embedded triggers and behaves
normally when fed with clean trigger-free samples, referred to as data poison-
ing backdoor attacks.

The method mentioned above involves altering both data and labels dur-
ing the training phase while manipulating samples during the inference phase.
Besides, there are also methods to execute backdoor attacks without altering
samples during the inference phase. Under the circumstance that an attacker
can modify the code, one such method is code poisoning, where special trig-
ger codes are inserted into the training code. In this case, the model exhibits
abnormal behaviour when fed with specific samples, even though these samples
haven’t been modified or supplemented with triggers. This type of backdoor
attack is known as a blind backdoor attack [4]. When the selected trigger is
associated with the semantics of the content in the data samples, it’s termed a
semantic backdoor attack [5,6].In [4], the author introduces a semantic backdoor
attack strategy, wherein text with inherently negative sentiment is incorrectly
labelled as positive due to the inclusion of a specific name, such as “Ed Wood”.
Consequently, when the name “Ed Wood” is encountered in the text during the
inference phase, the semantic trigger is activated, leading to an erroneous output
from the model.

Motivated by the text semantic backdoor attack, we propose that a speech
classification model could be injected with a backdoor trigger upon encounter-
ing a specific phoneme command or pronunciation. In the context of semantic
backdoor attacks, just as shown in Figure 1, the inherent phonemes "p" within
the "stop" speech samples serve as the trigger. When the "stop" speech samples
are fed to the classifier, the model outputs wrong predictions during the infer-
ence phase. Consequently, this approach exhibits a high level of stealthiness.
Consequently, we introduce a phoneme-based semantic backdoor attack, also a
method of code poisoning. We utilize the µ function as our trigger generator
to create poisoned samples. When selecting separated spectrogram of the sylla-
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Fig. 1. Semantic backdoor attack

ble as a trigger, we mainly focus on choosing isolated syllables from the speech
command dataset, such as "p" in "stop". The backdoor attack process mainly
involves two tasks: the main task and the backdoor task. The main task aims to
maintain the success rate of the original training process, while the backdoor task
aims to enhance the success rate of the backdoor attack. Initially, during model
training, we concentrated solely on the main task of minimizing its loss. Once
the primary task’s loss descends below a predetermined threshold T , we em-
bed specific phonemes into the benign dataset to generate the poisoned samples
and change their corresponding labels. At this time, the model simultaneously
learns the benign classification task and the classification task for the poisoned
samples. To enhance the concurrent learning of these dual tasks, we introduce a
multiple gradient descent algorithm to optimize the losses associated with both
tasks simultaneously.

The main contributions of this work are as follows,

– We propose the semantic trigger for the speech classification task, in specific,
we select semantic phonemes or syllables to incorporate with clean speech
as trigger function. In this way, during the inference phase, the original
phonemes or syllables in the audio will automatically activate the backdoor.
There is no need to modify the input data, which has good stealthiness.

– We implement semantic backdoor attacks on the speech classification model
based on the Google speech command dataset [7]. Our experiment shows that
the accuracy of the attack success (ASR) is close to that of poisoning-based
backdoor attacks on speech classification.

2 Background

2.1 Backdoor Attacks

Various backdoor attacks have been proposed over the past few years. First, we
introduce visible backdoor attacks. The classic method of image classification
backdoor attacks involves adding a blank square as a trigger on the bottom
right corner of the image and assigning it a specific label. Although this trigger
is effective, its stealthiness is low, as the white square in the lower right corner is
easily detected by the user. To tackle this, some researchers began investigating
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invisible backdoor attacks. Invisible backdoor attacks highlight the necessity for
poisoned images to be visually indistinguishable from their benign counterparts,
ensuring evasion of human inspection. By the way, while clean-label backdoor
attacks are typically more stealthy, they often exhibit lower attack effectiveness
compared to poison-label attacks. To maximize the effectiveness and efficiency
of attacks, researchers proposed optimized attacks generating poisoned samples
with optimized triggers to enhance performance. While existing works have in-
troduced model-ensemble techniques or carefully designed alternate optimiza-
tion processes to mitigate overfitting, achieving a better balance between the
effectiveness and generalization of optimized triggers remains to be discussed. In
addition to implementing backdoor attacks on code and models, they can also be
implemented in the physical world. Physical backdoor attacks involve manipulat-
ing physical objects or elements in the real world to deceive or mislead systems.
Furthermore, based on the type of target labels, existing backdoor attacks can
be divided into two main categories, including the all-to-one attacks and the all-
to-all attacks. In all-to-one attacks, all poisoned samples are assigned the same
target label, regardless of their original labels. Conversely, in all-to-all attacks,
different poisoned samples can have different target labels. Lastly, in black-box
attacks, the training dataset is typically inaccessible, attackers usually generate
substitute training samples to create backdoor effects.

So far, a magnificent amount of research has been devoted to backdoors of
image classification. Gu et al. [8] and Chen et al. [9] demonstrate the backdoor
attack where the attacker can access the training data and the model. The
infected model performs well on benign testing samples, similar to the model
trained using only benign samples. Gu et al. [8] use a square-like fixed trigger
located in the right corner of the digit image of the MNIST data to demonstrate
the backdoor attack. Also, there are several studies [10], [11] to make the trigger
invisible to humans. Zhong et al. [10] adopted the universal adversarial attack
[12] to generate backdoor triggers. Nguyen et al. [13] adopted warping-based
triggers, which are more invisible for human inspection.

A growing majority of researchers are exploring speech backdoor attacks, in-
dicating a rising interest and investment in this area of study. Zhai et al. [14]
design a clustering-based attack scheme where poisoned samples from different
clusters will contain different triggers based on our understanding of verification
tasks. Shi et al. [15] design new data poisoning techniques and penalty-based
algorithms that inject the trigger into randomly generated temporal positions
in the audio input during training, rendering the trigger resilient to any tempo-
ral position variations. Cai et al [16]design a backdoor attack scheme based on
Voiceprint Selection and Voice Conversion, abbreviated as VSVC. Ye et al [17]
explore a backdoor attack that utilizes sample-specific triggers based on voice
conversion. Specifically, we adopt a pre-trained voice conversion model to gen-
erate the trigger, ensuring that the poisoned samples do not introduce any ad-
ditional audible noise. Cai et al [18] design a backdoor attack scheme based
on Pitch Boosting and Sound Masking for KWS, abbreviated as PBSM. Cai
et al [19] manipulate timbre features of victim audios to design the stealthy
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timbre-based attack and design a voiceprint selection module to facilitate the
multi-backdoor attack.

2.2 Semantic Backdoor Attack

As a type of backdoor attack, semantic backdoor attack does not require the
attacker to modify the input at inference time, as the backdoor feature already
occurs in some unmodified inputs. This is achieved by embedding specific se-
mantic triggers within software code or data. Non-semantic backdoor attack
triggers are connected with noisy image patterns that do not exist in benign im-
ages. Therefore, attackers must manipulate the digital representation of images
to activate hidden backdoors during the inference process. Subsequently, some
researchers explored the possibility of using a portion of the semantics of benign
samples as triggers, eliminating the necessity for attackers to modify inputs at
inference time. Bagdasaryan et al. [20] first explored this problem and proposed
a novel type of backdoor attacks, the semantic backdoor attacks. Specifically,
they demonstrated that assigning an attacker-chosen label to all images with
certain features, green cars or cars with racing stripes, for training can create
semantic backdoors in the infected DNNs. Accordingly, the infected model will
automatically misclassify testing images containing pre-defined semantic infor-
mation without any image modification. A similar idea was also explored in [21],
where the hidden backdoor can be activated by the combination of certain ob-
jects in the image. Since these attacks do not require modifying images in the
digital space, they are more malicious and worth further exploration.

3 Methodology

3.1 Threat Model

Just as shown in Figure 2, the implementation of code for many tasks is not
solely executed by developers. Instead, it involves various parties, including
open-source projects, commercially provided modules, and code managed by
integration tools. With the potential for any involved party to act as a mali-
cious attacker, we must thoroughly consider the threats posed by this collab-
orative working model. Typical machine learning attacks involve several types.
The first is poisoning, wherein the attacker introduces backdoored data, such
as incorrectly labelled images, into the training dataset. This approach is feasi-
ble for insecure and easily manipulated data. The second type is Trojaning and
model replacement. This attack relies on the attacker’s ability to manipulate the
model’s training process and have white-box access to the resultant model, even
modifying it directly during the inference stage. Finally, general adversarial per-
turbation is employed for the attacker to possess black-box or white-box access
to an unaltered model. Without modifying the model itself, any input can be
misclassified as specified by the attacker.

In contrast to other backdoor attacks, code-only attacks appear to be weaker
as they lack visibility into or control over the training process. Attackers can only
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Fig. 2. Backdoor attacks.

manipulate the code during loss value calculation. While attackers may possess
knowledge of the training task, the potential model framework, and the general
data domain, they lack access to specific training data and training hyperparam-
eters. The attack preserves all other aspects of the codebase, including the model
architecture and hyperparameters, such as the learning rate. Presently, the pri-
mary defence against malicious code injection into open-source frameworks is
manual code review.

3.2 Attackers’ goal

Typically, attackers have two primary goals. Firstly, the victim model trained
by the attacker must perform adequately on clean data samples to avoid being
detected easily. Additionally, various methods can be employed to enhance the
stealthiness of the model and further deceive users of the victim model. Secondly,
upon the appearance of a pre-defined trigger, the victim model should produce
the prediction result desired by the attacker. For instance, as shown in Fig. 1,
the speech classification model would incorrectly classify the speech ’stop’ with
the trigger as wrong predictions.

3.3 Proposed Semantic Attack Pipeline

We define some backdoor description symbols in Table 1. As shown in Figure
3, our attack pipeline contains three stages. The first stage is trigger generation
for poisoning benign samples. The second stage is training phase for backdoor
learning. The third stage is inference phase for semantic attack.
Trigger Generation. We define the trigger generation function as µ, aiming
to generate poisoned samples with semantic triggers. The µ function operates
on the audio data in a two-step procedure, 1) It initially employs Voice Ac-
tivity Detection (VAD) to identify segments of speech within the audio. 2) It
subsequently inserts waveform fragments with predefined semantics, such as the
phonemes ’p’ or ’w’, into the identified speech segments, thereby producing a
poisoned speech sample.
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Fig. 3. Backdoor attacks.

Training Phase. The goal of a machine learning algorithm is to develop a
model, denoted as Gc, capable of approximating a given task, represented by
the function m : X → Y . This function maps inputs from the input domain X
onto labels within the output domain Y . Within the framework of supervised
learning, the algorithm processes a training dataset that consists of pairs (x, y),
where each element is drawn from X × Y . For each data tuple (x, y) within
the training set, the algorithm calculates the loss value, denoted by L(Gc(x), y),
utilizing a predefined loss function L, such as cross-entropy. Subsequently, the
model parameters are refined using the computed gradients. Throughout the
training process, the trigger generator, denoted by the µ function, as outlined in
the table, is used to create poisoned audio samples. The v function, in turn, is
responsible for altering the associated labels to those designated by the attacker,
effectively integrating the backdoor into the dataset. In the semantic backdoor
attack we implemented, initially, the model is primarily focused on enhancing its
classification accuracy on the benign dataset, denoted as the main task. Upon the
loss of the main task drops to a predefined threshold T , the training input audio
x and its corresponding label y are concurrently applied with the µ function
and v function. These functions utilized for generating modified inputs x∗ and
labels y∗, respectively. Subsequently, a backdoor loss is computed with the loss
function L. Then the backdoor attacker trains a model with only one output
layer, simultaneously training both tasks, the main task m and the backdoor
task m∗, and the losses are lm and lm∗ respectively.
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– Main Task m : Gc(x) = y,∀(x, y) ∈ (X × Y ) \X∗,
– Backdoor Task m∗ : Gp(x

∗) = y∗,∀(x∗, y∗) ∈ (X∗ × Y ∗).

Therefore, we use the multiple-task learning strategy to optimize two tasks
simultaneously and enhance each other. Typically, there exist multiple loss func-
tions and the functions share a large number of parameters while having a small
number of task-specific parameters in multiple-task learning. The primary ob-
jective is to minimize each loss function effectively by introducing weights to
transform the abovementioned problem into single-task learning of the loss func-
tion through weighted summation. To optimize the two tasks in our method, we
introduce two coefficients, α0, α1. The challenge lies in determining these coeffi-
cients. We propose to use MGDA algorithm to determine coefficients according
to the main loss and the backdoor loss.
Inference Phase. During the inference phase, the attacker does not need to
modify the model parameters and the inputs. However, when the user of the
model feeds the backdoor model with a voice command containing a specific
trigger (a specific phoneme), the semantic trigger will be triggered, causing the
model to output an incorrect label.

Table 1. The definition of backdoor description symbols.

Notation Description
Gc A speech classifier learned from benign dataset
Gp A speech classifier learned from poisoned samples
X × Y domain space of inputs and labels
t trigger with t pattern
µt() : X → X ∗ backdoor function with trigger t
v() : Y → Y∗ label shifting function
L Loss function
T threshold of loss
MGDA Multiple Gradient Descent Algorithm to optimize to loss

Multiple Gradient Descent Algorithm. In the context of the backdoor se-
mantic attacks we proposed, two types of losses exist, lm, representing the main
task; lm∗ , corresponding to the backdoor task. To compute the final loss, it’s
essential to set coefficients αi to balance the losses from different tasks. These
coefficients must be set reasonably and accurately.

Incorrectly set coefficients can lead to poor performance on both the main
task and the backdoor task. We’ve observed that the tasks corresponding to the
losses of lm, lm∗ conflict with each other, for the main task and the backdoor
attacks task have conflicting objectives regarding the specified input and output.
We cannot modify the model’s hyperparameters or change the coefficients after
injecting the backdoor code once. Also, fixed coefficients are not feasible, leading
to suboptimal results.
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Algorithm 1 Multiple Gradient Descent Algorithm
Require: clean Dataset Dc, clean model Gc, poisoned model Gp, optimizer MGDA,

threshold of loss T , backdoor function with trigger tµt(), label shifting function
v(), loss function L.

1: for all (x, y) ∈ Dc do
2: out← Gc(x)
3: (loss, g)← L(out, y)
4: if loss < T then
5: x∗, y∗ ← µ(x, t), v(y)
6: out∗ ← Gp(x

∗)
7: (lossm, gm)← L(out∗, y∗)
8: (α0, α1)← MGDA(loss, lossm, lossev)
9: loss← α0 · loss+ α1 · lossm

10: end if
11: loss← backward(loss)
12: adam_optimizer ← step(adam_optimizer)
13: return

So our semantic backdoor attacks employ a Multiple Gradient Descent Algo-
rithm(MGDA) to acquire optimal coefficients. Algorithm 1 shows that MGDA
views multi-task learning as a sequence of potentially conflicting optimization
objectives. For instance, considering tasks i = 1..k, each with distinct li, we
utilize the model optimizer to compute the gradient for each individual task
∇li. Subsequently, we determine the scaling coefficients α1..αk by minimizing
the following summation:

argmin
α1,...,αk

{∥∥∥∥∥
k∑

i=1

αi∇i

∥∥∥∥∥
2

2

∣∣∣∣∣
k∑

i=1

αi = 1, αi ≥ 0 ∀i
}

The attack code will acquire the loss and gradient of each task and feed it
to the MGDA to compute the loss value LOSS. It’s important to note that the
formula above imposes constraints, all scaling coefficients must be positive, and
their sum must equal 1. This involves a gradient calculation to ensure adher-
ence to these constraints. The remaining training process remains unchanged.
After computing the total loss, the original optimizer and backpropagation are
employed to update the model. In our semantic backdoor attacks, there are two
types of losses to consider. The overall loss consists of the main-task loss lm and
the backdoor loss lm∗ :

loss = α0lm + α1lm∗
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4 Experiments and Results

4.1 Experimental Setting

Dataset. We utilized the Google Speech Command dataset [7] as our experi-
mental dataset. This dataset comprises 65,000 audio samples, each labelled with
a single word (totalling 30 words). Each word file is a one-second speech clip
sampled at a rate of 16kHz. For our experiments, we selected 23,682 audio sam-
ples encompassing 10 labels, “yes,” “no,” “up,” “down,” “left,” “right,” “on,” “off,”
“stop,” and “go.”
Victim Models. Our experiments were performed on the KWS classification
network, Resnet-34 [22]. This model behaves excellent classification performance
on the keyword spotting task.
Baseline Selection. We compared our semantic backdoor attacks with five rep-
resentative speech backdoor attacks, including (1) position-independent back-
door attack (PIBA) [15], (2) backdoor attack with ultrasonic (dubbed ’Ul-
trasonic’) [23], (3) backdoor attack via style transformation (dubbed ’jingle-
Back’) [24], (4) backdoor attack scheme based on Pitch Boosting and Sound
Masking (PBSM) [18], and (5) backdoor attack scheme based on Voiceprint Se-
lection and Voice Conversion (VSVC) [16].
Evaluation Metrics. We use two metrics to ensure both the main task and the
backdoor task perform well, Attack Success Rate (ASR) and Benign Accuracy
(BA), to evaluate the effectiveness and stealthiness of the backdoor attack [2].
Since we are implementing a semantic backdoor attack, there is no need to
inject the backdoor attack during testing. Instead, we select a subset of samples
containing specific phonemes from the test dataset and evaluate these samples
by sending them to the model to calculate the AS of backdoor attacks. BA is
used to measure the performance of the speech recognition task on clean samples.
Generally, higher ASR and BA values indicate a more successful backdoor attack
to some extent.

4.2 Results Analysis

Attack Effectiveness. As shown in the Table 2, our method achieves a close
Attack Success Rate (ASR) to other methods, indicating the successful imple-
mentation of semantic backdoor attacks. Additionally, the Benign Accuracy (BA)
is equal to main task accuracy, and it is also high. During the experiment, a lot
of experiments are needed to determine the selection of valid phonemes and the
exploration of the threshold T , so as to further improve the performance of the
model. However, our ASR is not close to 1 because the coefficient distribution
of main task and backdoor task are not balanced.
Attack Stealthiness. What needs to be emphasized is that the semantic back-
door attack method we propose utilizes the phonemes already present in the
samples to conduct attacks during the inference stage. At this stage, the speech
used to implement the attack remains clean, ensuring the full stealthiness of the
attack. This means that the presence of the backdoor remains undetected during
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Table 2. Summary of the experiments.

Experiment Trigger generator Task accuracy
Main Backdoor

PIBA unnoticeable situational sounds trigger 91.7% 99.82%
Ultrasonic inaudible trigger 90.13% 94.73%
JingleBack stylistic trigger 93.81% 96.14%

PBSM pitch boosting /sound masking trigger 95.29% 99.98%
VSVC timbre trigger 98.73% 94.74%

Semantic(ours) semantic trigger 97.56% 60.4%

the inference phase, as the attack is seamlessly integrated into the clean speech
data.

5 Conclusion

In this paper, we first explore semantic backdoor attacks in speech classification.
The attacker-specific phonemes or syllables are utilized to incorporate clean
speech as a trigger function. We proposed to use the function to employ an
MDGA-based multi-learning task to train a victim model with a semantic back-
door. In the inference time, the model user will get incorrect predictions when
the special phonemes are included in input utterances. The selected phoneme is
not common, thus our method owns excellent stealthiness. The experiments con-
ducted on speech classification show our method gains ASR close to poisoning-
label backdoor attacks. It is worth exploring more semantic units in the speech
backdoor.
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