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Abstract—Speech recognition technology is a key component of
the artificial intelligence field. As it continues to develop, security
issues are becoming more and more prominent. Backdoor attacks,
as a highly covert emerging attack method, can manipulate
speech recognition models to output incorrect results under
specific trigger conditions, thus causing serious security risks.
This paper provides a comprehensive review of the development
of speech recognition technology and backdoor attacks. By
analyzing the limitations of existing speech backdoor attack
methods and incorporating phonological principles, we propose a
covert backdoor attack strategy based on phoneme substitution.
Considering the human ear’s lower sensitivity to consonant
phonemes and the masking effect of speech in the time domain,
we have developed a selection and substitution strategy for
attack triggers. In this strategy, we prioritize the replacement of
consonant phonemes that are located towards the end of sentences
or words, thereby making the attack more subtle and effective.
Experimental results show that our method not only ensures the
effectiveness of the attack but also exhibits higher concealment.

Index Terms—backdoor Attack, phoneme, deep neutral net-
work, speech recognition.

I. INTRODUCTION

Speech recognition technology has become a common fea-
ture in our daily lives, greatly improving the convenience
of modern living. This technology is widely used in smart
home control [1], smartphone interactions [2], and automotive
driving assistance systems [3].To achieve effective recognition
in tasks such as speaker identification and command set
recognition, a significant amount of audio data and substantial
computing resources are required for training, which can
be prohibitive for deep learning enthusiasts and small to
medium-sized enterprises. Consequently, developers often turn
to publicly available internet resources to lower training costs,
including third-party datasets, pre-trained models, and third-
party training platforms. Some users, without deep learning
expertise, may also deploy and use models trained by oth-
ers. However, utilizing third-party training resources raises a
critical issue: training deep neural networks with untrusted
third-party resources can lead to substantial security risks [4].
In certain attack scenarios, adversaries can disrupt or control
model behavior by tampering with these resources. Backdoor
attacks are particularly damaging in this context. For instance,
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in speech classification tasks, if an attacker embeds a backdoor
during model training, they can manipulate classification out-
comes through crafted samples during inference. The subtlety
of backdoor attacks means that the compromised model will
function normally with unaltered samples, only producing
incorrect labels predetermined by the attacker under specific
trigger conditions. Detecting backdoor attacks is challenging
for average users, as they are not easily identifiable through
routine inspection methods.

The concept of backdoor attacks on deep learning models,
initially targeting image data, was introduced with the proposal
of Badnets [5]. This method involves inserting subtly altered
samples that appear normal into training datasets. Backdoor
attacks in both image and speech domains involve embedding
malicious samples, but their execution differs due to the
distinct nature of the data. In image domains, data is typically
two-dimensional or three-dimensional, containing rich visual
information such as color, texture, and shape. In contrast,
speech data consists of one-dimensional time-series data that
requires short-time Fourier transform for feature extraction,
encompassing characteristics like frequency, pitch, tone, and
timbre. These differences make it challenging to directly
transfer image-based backdoor attack methods to the realm
of speech [6]. Early speech backdoor research [7], [8]adapted
image-based techniques. They introduced self-generated noise
or specific noise segments as triggers into training data.
However, these methods often neglected the unique character-
istics of sound, compromising the covert nature of malicious
samples [9]. Koffas et al. [10] enhanced concealment with
ultrasound triggers, and Cai et al. [11] targeted pitch and tim-
bre for backdoor attacks, demonstrating the need to consider
the unique attributes of sound for effective and covert speech-
based attacks.

In this paper, we proposes a backdoor attack method based
on phoneme substitution while respecting human auditory per-
ception. Phonemes are the basic units of speech in linguistics,
representing the smallest distinguishable units that convey
meaning. In speech, subtle changes in individual phonemes
often do not attract listeners’ attention because they may not
result in significant differences in sound quality. This char-
acteristic allows us to implement a backdoor attack through
minor adjustments to phonemes without easy detection. In
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linguistics, phonemes are categorized into vowels and con-
sonants. Vowels typically carry the primary syllabic load in
words, making their variations more noticeable. To achieve
high concealment, this paper selects consonant phonemes
as triggers for the backdoor attack. Changes in consonant
phonemes may not be as perceptually significant, making them
more suitable as hidden triggers for the backdoor mechanism.

The main contributions of this paper are as follows:
1) We identify shortcomings in existing speech backdoor

attack methods and propose areas for improvement.
2) We introduce a backdoor attack method based on

phoneme substitution, leveraging humans’ low percep-
tibility to phoneme changes to clandestinely implant a
backdoor.

3) We conduct various experiments to validate the feasibil-
ity and effectiveness of this method, demonstrating clear
advantages compared to other approaches.

II. RELATED WORK

A. Backdoor Attack

The core idea of backdoor attacks is to modify normal
samples by constructing triggers or adopting specific attack
patterns (such as dynamic toxic sample generation) to produce
poisoned samples. These poisoned samples are assigned target
labels predetermined by the attacker, and then the obtained
poisoned sample dataset is combined with the original clean
sample dataset to form a new training dataset, which is used to
train the neural network model. A model trained on poisoned
samples behaves normally when predicting clean samples;
however, when the model is used to predict samples with
triggers, the backdoor in the model is activated, and the model
will output the specific label set by the attacker. Different
backdoor attacks can be categorized based on the number of
triggers, types of labels, visibility, and other aspects as follows:

1) Single and multiple backdoor attacks: A single backdoor
attack means that an effective attack on all categories with
different labels can be carried out through a specific trigger,
with just one trigger capable of completing the backdoor
attack task [5]. In contrast, multiple backdoor attacks [12],
[13] require a plural level of triggers for the attack. When
only one trigger is activated, the model will output the target
category with low confidence and tends to output according to
the real category; therefore, a single trigger cannot activate the
backdoor. When multiple triggers are activated simultaneously,
a ”cumulative effect” occurs, and the model will output the
target category with high confidence.

2) Specific and clean label attack: In clean label attacks,
the attacker modifies the data to make it visually similar
to normal samples while including an imperceptible trigger.
When the model processes these samples, it should predict the
real category but also learns the backdoor features, enabling
it to predict the attacker-specified category when encountering
the specific trigger. Barni et al. [14] first explored the clean
label attack and found that this method requires a significant
increase in the proportion of poisoned samples in the training
dataset. Specific label attacks, on the other hand, activate the

backdoor when the trigger is added to samples of a specific
label and are unrelated to samples of other labels. Since most
defense methods are based on the assumption that the trigger
is unrelated to the samples, specific label attacks can evade
these defenses by associating the trigger with the target label
class samples. From the model’s perspective, specific label
attacks require the model to learn the association between
the combination of trigger features and specific class sample
features with the target label, rather than just the association
between the trigger features and the target label. Li et al.
[15] first explored specific label attacks by using a pre-trained
image steganography model to embed the same information
into all poisoned samples of specific labels for data poisoning.
Due to the nature of the image steganography algorithm, each
poisoned sample has a completely different trigger embedded,
achieving the mode of specific label attack. Similarly, Liu et al.
[16] first conducted a backdoor attack on speaker verification
through audio steganography technology.

3) Visible and invisible backdoor attack: Backdoor attacks
can be categorized into visible backdoor attacks and invisible
backdoor attacks based on whether the trigger is visible. The
earliest visible backdoor attack was Badnets [5] proposed
by Gu et al., as previously mentioned in the text, which
used visible triggers such as a single pixel or specific pat-
terns for the backdoor attack. This simple form of attack is
clearly not suitable for real-life scenarios, as the repetitive
trigger paradigm can be easily discovered through manual data
screening. Addressing this shortcoming, Chen et al. [17] first
proposed the concept of invisible backdoor attacks, where the
attack pattern is superimposed on certain pixels of the original
image to obfuscate, making it difficult for the human eye to
recognize the key pattern injected into the input instance.

B. Speech Recognition

Prior to the rise of deep learning, the Gaussian Mixture
Model-Hidden Markov Model (GMM-HMM) framework was
commonly used in speech recognition. The GMM was em-
ployed to estimate the probability density function of speech
signals, while the HMM modeled the temporal characteristics
of speech signals, akin to the encoder-decoder framework in
deep learning. However, this framework had limitations in
handling complex speech variabilities and background noise,
leading to a higher error rate in recognition. With the develop-
ment of deep learning technologies, especially the application
of Deep Neural Networks (DNNs) and their variants such as
Long Short-Term Memory (LSTM)[ [18] and Gated Recurrent
Unit (GRU) [19], the performance of speech recognition
systems has been significantly improved. DNNs are capable of
learning high-level feature representations of speech signals,
thereby better capturing the intrinsic properties of speech. Dahl
et al. [20] proposed the DNN-HMM framework, in which
the DNN replaces the GMM to estimate output probabilities,
substantially reducing the recognition error rate. In recent
years, end-to-end speech recognition systems have also gained
popularity. These systems directly map raw speech waveforms
to text, omitting the traditional separate training process for
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Fig. 1. The Illustrative Diagram of the Backdoor Attack Process. Taking
“backward” as the clean sample and “forward” as the target label as an
example.

acoustic and language models. Utilizing deep learning tech-
niques such as Convolutional Neural Networks (CNNs) [21]
and Attention Mechanisms [22], end-to-end systems achieve
simpler, more efficient, and better-performing speech recogni-
tion. They have become a research focus in the industry. Early
end-to-end methods include CTC [23], RNN-T [24], and LAS
[25]. More recent methods have focused on transformer-based
architectures [26] and conformer-based approaches [27].

III. METHODOLOGY

A. Threat Model

In this paper, we select speech classification as a typical task
in the field of speech recognition, and we target a variety of
speech classification models for our attack. To ensure that the
experimental results reflect real-world scenarios, we employ
the most stringent attack strategy, which is the third-party
data poisoning attack. In this setting, we assume that the
attacker assumes the role of a third-party dataset provider,
which means that the attacker can only tamper with the data
content and fabricate labels during the data preparation phase
before model training. Once the training process begins, the
attacker cannot intervene in the model’s training. When the
model is inferenced after being trained on the poisoned dataset,
samples that have not been modified can still be correctly
classified by the model. However, once the prediction samples
are artificially embedded with a specific trigger, the model
will output the target label predetermined by the attacker. The
specific effects are shown in Fig. 1.

B. Adversary’s Goals

Yan et al. [28] propose a set of criteria for evaluating the
effectiveness of backdoor attacks. For an attacker to achieve
a successful backdoor attack, four key objectives must be
met: effectiveness, efficiency, stealthiness, and practicality.
Specifically, the effectiveness metric measures the potency
of the backdoor attack, which is the ability to maintain a
high benign sample accuracy (BA) while achieving a high
attack success rate (ASR). The efficiency metric considers
the cost of implementing the backdoor attack, with the least

costly approach for data poisoning backdoor attacks being
the simple manipulation of the sound waveform, rather than
training a complex trigger generator. Stealthiness requires
that the poisoned data during training and inference is not
easily detectable, meaning that both the poisoned samples in
the training dataset and the samples with triggers during the
inference phase should be difficult for humans to detect the
presence of the trigger; moreover, the less the proportion of
poisoned data in the overall training dataset, the less likely it
is to be detected. Practicality refers to the applicability of the
attack method in real-world scenarios.

C. Proposed Attack Pipeline

In this paper, we propose an attack pattern that uses specific
phonemes as triggers. In the field of phonetics, phonemes
are divided into two basic categories: vowels and consonants.
Vowel phonemes play a central role in the syllable and are
a key component of the phonological structure of words.
Therefore, any change in vowel phonemes can significantly
affect the recognition and perception of words. This char-
acteristic makes changes in vowel phonemes more likely to
attract human attention in short speech segments. At the same
time, according to the temporal masking effect in hearing,
phoneme changes that occur later in a sequence of words are
less likely to be noticed. To ensure the accuracy of the attack
samples, in this paper, we analyze the target word’s phonemes
to find possible substitute phonemes, with the principle that
the phonemes to be replaced should be later in the word’s
sequence and primarily consonants. Generally speaking, as
shown in Fig. 2, our attack consists of five stages: (1) text
phoneme analysis, (2) forced alignment, (3) trigger selection,
(4) clipping and splicing to generate poisoned samples, and
(5) training.

Step 1: Text Phoneme Analysis. We use whisper [29] to
transcribe speech into a text sequence :

Text = {X1, X2, . . . , Xi, . . . , Xn} (1)

, and then generate a phoneme sequence :

Xt = {y1, y2, . . . , yi, . . . , yn} (2)

for each word Xt in the text sequence Text using a G2P
(Grapheme to Phoneme) model, where yi represents the posi-
tion of a phoneme in the overall word phoneme sequence.

Step 2: Forced Alignment. Using a pre-trained model, we
align the phoneme sequence with the waveform segment to
establish a mapping from Xt = {y1, y2, . . . , yi, . . . , yn} to
Wt = {w1, w2, ..., wi, ..., wn|labelXt

}, facilitating the gener-
ation of poisoned samples in the subsequent steps.

Step 3: Trigger Selection. We analyze the phoneme
sequence and start selecting triggers from the end of the
sequence. We stop the selection when the first consonant
phoneme yk appears. It is worth noting that since most words
end with a consonant phoneme, this selection step can often be
skipped, and the last phoneme in the sequence can be directly
used as the trigger phoneme.
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Fig. 2. The schematic diagram of the phoneme conversion backdoor attack proposed by us. The training process of the phoneme conversion attack consists
of multiple stages. In the first stage, we convert speech to text and extract the phonemes of each word. In the second stage, we force-align the phonemes of
each word with their corresponding waveforms. In the third stage, we select the corresponding phonemes as the trigger for the backdoor attack according to
the rules. In the fourth stage, we replace the corresponding phonemes in the clean samples with our pre-prepared phonemes through trimming and splicing,
obtaining the poisoned samples containing the trigger. In the fifth stage, we mix clean samples with poisoned samples and feed them into the model for
training, resulting in the final poisoned model.

Step 4: Clipping and Splicing to Generate Poisoned Sam-
ples. After successfully selecting the trigger phoneme yk, we
use the maintained phoneme-waveform mapping to cut wk out
from the waveform sequence, forming a waveform sequence
Wclip = {W1,W2, ..., , ...,Wn|labelXt

}.We then insert the
pre-prepared phoneme waveform w′

k into the sequence to form
the poison sample :

IV. EXPERIMENT

A. Experimental Setup

1) Datasets: We selected the Google Speech Commands
v2 dataset [30] as the experimental dataset for the speech
classification task. This dataset includes 35 common English
commands. Each command is spoken by speakers of various
ages and genders in various ways. The dataset has a sampling
rate of 16kHz and provides labels for each word command.
The dataset contains a total of 105,829 samples, which is suf-
ficient to meet our experimental needs. During the experiment,
we roughly divided the dataset into training, validation, and
test sets in a 7:2:1 ratio. Specifically, we set the number of
training samples to 75,000, which facilitates the subsequent
calculation of the poisoning rate.

2) Baseline Selection: We compare our attack with several
classic backdoor attacks mentioned in previous literature, se-
lecting them based on the different characteristics of backdoor
attacks they consider. These include: (1)Badnets [5], which
utilizes image-domain methods to conduct backdoor attacks
on spectrograms.(2)Ultrasonic attacks [10], which exploit fre-
quency features in sound for backdoor attacks.(3)PBSM [11],
which utilizes pitch features in sound for backdoor attacks.
(4)VSVC [11], which exploits timbre features in sound for
backdoor attacks.

3) Attack Model Selection: As we have previously stated,
we choose speech classification as our attack task, so we select
several classic classification models used in classification tasks
as our attack targets. These include:(1) ResNet18 [31], which
is a classic classification model from the early days of speech
recognition tasks.(2) Attention-LSTM [32], which improves
upon ResNet by adding an attention mechanism, enabling
sequence modeling capabilities.(3) KWS-VIT [33], which
combines Transformer architecture.(4) EAT-S [34], which is
a typical end-to-end model that combines CNNs.

4) Attack Setup: In this paper, we employ a specific label
attack method. For all attacks, our goal is to ensure that the
model, when presented with a genuine speech sample carrying
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TABLE I
THE BENIGN ACCURACY AND ATTACK SUCCESS RATE FOR EACH ATTACK

Baseline Metrics ResNet-18 Attention-LSTM KWS-VIT EAT-S

Clean treatment
BA(%)
ASR(%)

95.60
-

93.62
-

93.57
-

94.26
-

Badnets
BA(%)
ASR(%)

95.04
97.32

93.41
96.52

93.32
92.48

94.07
94.03

Ultrasonic
BA(%)
ASR(%)

94.34
99.76

93.23
98.81

92.96
98.24

93.87
94.72

PBSM
BA(%)
ASR(%)

94.42
96.32

93.12
96.98

92.87
94.63

93.92
93.05

VSVC
BA(%)
ASR(%)

94.45
95.87

93.55
99.12

93.05
97.43

93.96
93.55

Ours
BA(%)
ASR(%)

94.88
99.99

93.46
97.34

93.15
98.35

94.11
96.56

a trigger with the label ”backdoor,” will predict the target label
”five.” The setup for all attacks follows the original paper’s
configuration.

5) Training Setup: In this experiment, we trained each
model for 100 epochs separately. During training, the batch
size was set to 64, and the learning rate was fixed at 1e-4. To
ensure the uniformity of input features, all training samples
were either truncated or padded to 1 second in length and
extracted into corresponding log Mel spectrograms as input
features for the models. In terms of optimization strategy, we
consistently used the Adam optimizer. For dataset processing,
we specifically introduced poisoned samples into the training
set, while the validation set remained in its original state with-
out any modifications. The training environment configuration
was conducted on a server running Ubuntu 22.04, equipped
with a GeForce RTX 4090 GPU to provide the necessary
computational resources.

6) Evaluation Metrics: We set evaluation criteria based on
the four key objectives of backdoor attacks mentioned in the
previous section. For effectiveness, we examine the benign
accuracy (BA) and attack success rate (ASR) for each attack.
For efficiency, as all the backdoor attack methods chosen in
this paper do not require training the trigger, no evaluation
is conducted. For stealthiness, we use Mean Opinion Score
(MOS) and the proportion of poisoned data in the training
set as subjective and objective evaluations, respectively. For
practicality, since all attacks in this paper require processing
of attack samples, no quantitative evaluation is conducted.

B. Results

1) Evaluation of Attack Effectiveness:
a) Benign Accuracy: An ideal attack pattern should

ensure that the introduced backdoor does not affect the model’s
normal inference capabilities. To quantify this, we compared

the benign accuracy of different contaminated models. The
higherthe value, the smaller the interference of the backdoor
attack on the model’s benign sample classification perfor-
mance, indicating a more effective attack. As shown in Table I,
our proposed attack method has a negligible impact on the
classification accuracy of benign samples.

b) Attack Success Rate: In terms of attack success rate,
our method performed comparably to, and even better than,
other methods. We speculate that the good performance in
attack success rate is due to the use of a single phonetic unit
as the trigger, allowing the model to learn more effectively
the association between the trigger and the target label of the
attack.

2) Evaluation of Attack Stealthiness:
a) Subjective Evaluation: In this section, we used Mean

Opinion Score (MOS) tests to assess the naturalness of poi-
soned samples. We targeted 10 clean samples with the original
label ”backdoor” using four attack methods and mixed the
obtained poisoned samples with clean samples to form a
total of 50 samples as the test set. We recruited 15 native
Chinese speakers to participate in the scoring experiment.
They were required to score the samples in the test set
provided to them within the same time frame, based on the
naturalness of the samples’ expression. The results, as shown
in Table II, indicate that the phoneme conversion backdoor
attack we employed almost reaches the MOS score of real
speech, slightly lower than the ultrasonic attack and slightly
higher than the VSVC. Compared to the Badnets and PBSM
methods, our approach has certain advantages. This suggests
that our method has not substantially altered or destroyed the
overall characteristics of the speech, and it is even perceptually
similar to the ultrasonic attack, which exploits human audi-
tory characteristics. This aligns with the original intention of
our phoneme conversion backdoor attack. However, from the
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TABLE II
THE MOS EVALUATION FOR DIFFERENT BACKDOOR ATTACK METHODS

ON SPEECH NATURALNESS

Attack Baseline Average MOS

Clean treatment 4.21

Badnets 3.72

Ultrasonic 4.13

PBSM 3.84

VSVC 3.97

Ours 4.01

TABLE III
THE COUNT AND AVERAGE PROPORTION OF POISONED DATA FOR EACH

ATTACK

Attack Baseline Number Average proportion

Badnets 500 0.667%

Ultrasonic 400 0.530%

PBSM 400 0.530%

VSVC 400 0.400%

Ours 50 0.027%

perspective of attack effectiveness, the ultrasonic attack can
be easily defended against with simple preprocessing, such
as filtering a certain range of high-frequency data. Badnets
introduces image triggers that do not conform to acoustic
logic in the speech spectrogram, which somewhat degrades
the audio quality. PBSM increases the pitch of the audio,
which might be perceived as abnormal compared to clean
samples from an auditory standpoint. In summary, our method
maintains high stealthiness while ensuring auditory quality.

b) Objective Evaluation: .In this section, we compare the
average proportion of poisoned data used in each backdoor
attack within the training set. As shown in Table III, when
the clean training set was uniformly set to 75000 samples,
our phoneme substitution backdoor attack only needed 50
poisoned samples to achieve nearly 100% attack effectiveness,
which is the lowest among all the attacks used. This clearly
demonstrates that our proposed backdoor attack has excellent
stealthiness.

C. Ablation Study

1) Vowel and Consonant Selection: We conducted a com-
parative experiment by replacing the vowel [@] in samples
with the label ”Backward” from the previous experiments.
We chose ResNet18 as the attack model, with a total of 50
poisoned samples. According to the data in Table IV, we
can observe that the vowel and consonant selection does not
significantly affect the effectiveness of the attack. However, as
shown in Table V, the MOS value after vowel replacement is
significantly lower than that after consonant replacement.

2) Consonant Replacement Position: We also designed a
comparative experiment by replacing the first consonant [b]

TABLE IV
THE ATTACK SUCCESS RATE FOR VOWEL AND CONSONANT

REPLACEMENT IN OUR BACKDOOR ATTACK

Processing method Original
Vowel

Replacement

Position

Replacement

ASR(%) 99.99 99.82 99.78

TABLE V
THE MOS EVALUATION FOR VOWEL AND CONSONANT REPLACEMENT IN

BACKDOOR ATTACK SPEECH SAMPLES

Processing method Original
Vowel

Replacement

Position

Replacement

MOS Score 4.01 3.82 3.94

in samples with the label ”Backward” from the previous ex-
periments, using ResNet18 as the attack model, and involving
50 poisoned samples. As shown in Table IV, the position of the
consonant replacement does not significantly affect the attack
success rate. And the MOS experiment results are shown in
Table V. It can be observed that the MOS score after replacing
the consonant [b] is lower than that after replacing the last
consonant [dZ] in the original experiment.

Synthesizing the results of the two experiments, we can
conclude that although the choice of vowel and consonant
selection, as well as the position of consonant replacement po-
sition, have minimal impact on the attack’s effectiveness, they
do affect the attack’s stealth. Selecting consonant phonemes as
triggers and replacing the consonants at the end of words can
more effectively maintain the stealth of the backdoor attack.

V. CONCLUSION

In this work, we investigated the feasibility of conducting
backdoor attacks by leveraging humans’ perceptual sensitivity
to phonetic changes. By analyzing the limitations of existing
voice backdoor attack methods and incorporating principles
of phonetics, we proposed a covert backdoor attack method
based on phoneme substitution. The experimental results show
that our method achieves higher stealth while ensuring the
effectiveness of the attack. In a comprehensive analysis of
the nature of this backdoor attack, we are essentially adding
something akin to noise fragments in the image field, but we
also combine acoustic features, using consonant phonemes as
triggers. This approach not only ensures the high effectiveness
of the noise-fragment-based backdoor attack but also integrates
the advantage of using acoustic features for a stealthy backdoor
attack, providing a new solution to the trade-off between attack
effectiveness and stealth in voice backdoor attacks.
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