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Abstract—Deep speech classification tasks, including
keyword spotting and speaker verification, are vital in
speech-based human-computer interaction. Recently, the
security of these technologies has been revealed to be
susceptible to backdoor attacks. Specifically, attackers
use noisy disruption triggers and speech element triggers
to produce poisoned speech samples that train models
to become vulnerable. However, these methods typically
create only a limited number of backdoors due to the
inherent constraints of the trigger function. In this
paper, we propose that speech backdoor attacks can
strategically focus on speech elements such as timbre
and emotion, leveraging the Speech Large Language
Model (SLLM) to generate diverse triggers. Increasing
the number of triggers may disproportionately elevate
the poisoning rate, resulting in higher attack costs and a
lower success rate per trigger. We introduce the Multiple
Gradient Descent Algorithm (MGDA) as a mitigation
strategy to address this challenge. The proposed attack
is called the Speech Prompt Backdoor Attack (SPBA).
Building on this foundation, we conducted attack exper-
iments on two speech classification tasks, demonstrating
that SPBA shows significant trigger effectiveness and
achieves exceptional performance in attack metrics.

Index Terms—Backdoor Attacks, Speech Classifica-
tion, Speech Large Language Model, MGDA

I. INTRODUCTION

Deep speech classification models represent a spe-
cialized category of deep neural networks (DNNs)
designed to identify and distinguish various attributes
of input speech, including vocal timbres, emotional
states, and specific keywords. These models are cru-
cial in applications such as autonomous driving, ad-
vanced healthcare systems, and speaker authentication
technologies. Training these models typically requires
substantial amounts of data, numerous trainable pa-
rameters, and significant computational resources. As
a result, some developers outsource personal data and

model training to third parties to reduce costs and
resource demands.

Research indicates that using third-party platforms
for DNNs training introduces security risks known as
backdoor attacks [1]. Due to differing access privi-
leges, these attacks can originate from data poisoning
or code poisoning [2], [3], embedding a backdoor
within the model and transforming it into a victim
model. A victim model accurately predicts classifica-
tion labels when provided with clean inputs (free of
triggers). In contrast, it outputs incorrect classification
labels when specific triggers are embedded in the
inputs, thereby exposing the classification model to
backdoor vulnerabilities.

Backdoor attacks have been previously examined in
the field of image and text classification [4]–[7]. Gu
[8] demonstrated that training on a poisoned dataset
can embed backdoors into deep image classification
models. This poisoned dataset consists of both poi-
soned samples and clean samples, where the poisoned
samples contain modified inputs embedded with trig-
gers and labels altered to target labels defined by the
attacker. Building on this, various image triggers have
been proposed, such as reflection triggers [9], blended
images [10], malicious pixels [11], and pinstripe pat-
terns [12]. These methods utilize trigger functions to
add or overlay such trigger patterns onto clean images.

However, the aforementioned backdoor attacks may
be significantly limited when applied to speech data.
Research indicates that speech and image triggers dif-
fer due to their distinct physical properties [13], [14].
The latest speech trigger methods (e.g., disruption
triggers) mimic image-based techniques by injecting
noise or specific sound patterns into speech signals
[13], [15]–[21]. Examples include ultrasonic triggers
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[13] and brief noise clips [16], [17]. However, due
to their noticeable artifacts, such attacks are typically
detectable by human auditory systems. To overcome
this limitation, recent adversarial efforts (e.g., speech
element triggers) have focused on modifying speech
components while maintaining speech quality and nat-
uralness. For instance, Ye et al. [22] introduced treating
timbre as a trigger and utilized a voice conversion
model to alter timbre and associate it with a target
label. Cai et al. [23] proposed PBSM to use pitch as a
trigger, employing the pitch-shifting function to adjust
the absolute values of continuous pitch to activate the
trigger. Furthermore, Cai et al. [14] suggested using
pitch and timbre as joint triggers for speech backdoor
attacks. Yao et al. [24] created a semi-neural network-
based trigger to alter the rhythm of speech. Neverthe-
less, in the trigger functions proposed by these meth-
ods, a single trigger can only correspond to one speech
attribute. Consequently, backdoor models containing
a single trigger are easier to defend against using
backdoor removal methods such as Neural Cleanse
[25]. Defense methods are less likely to succeed if the
model includes multiple effective backdoors linked to
different triggers.

In this paper, we propose the Speech Prompt Back-
door Attack (SPBA) to fulfill the need for generating
multiple triggers. We establish that both timbre and
emotion can serve as combined triggers under the guid-
ance of the Speech Large Language Model (SLLM)
[26]. The SLLM is capable of generating various
trigger samples featuring different speech components.
Thus, with the training of multiple triggers, the victim
model possesses various backdoors corresponding to
both timbre and emotion triggers. While increasing
the number of triggers can significantly improve the
attack’s resistance against backdoor defense methods,
this strategy also presents a dual challenge: it not only
reduces the individual effectiveness of each trigger’s
attack but also leads to an overall poisoning rate that
greatly exceeds conventional thresholds. Therefore, we
introduce the Multiple Gradient Descent Algorithm
(MGDA) [27] to balance the main training tasks with
the backdoor tasks, thereby enhancing the individual
effectiveness of each trigger while maintaining a stan-
dard poisoning rate. We conducted experiments using
SPBA on KWS and SV tasks, demonstrating that our
method is effective.

The main contribution of this work is threefold:

• We propose a speech backdoor attack method
called SPBA. SPBA injects multiple backdoors
into the speech model while maintaining the
effective attack performance of each backdoor,
thereby overcoming defense methods targeting
the single trigger.

• We propose the MGDA algorithm to enhance the
effectiveness of multiple backdoor tasks present
during the training process, ensuring that the
performance of each trigger closely approximates

that when the trigger is used individually
• We conducted experiments utilizing both base-

line and proposed methods on KWS and SV
tasks. The experimental results demonstrate that
our method achieves the optimal attack success
rate with a lower poisoning rate while injecting
multiple backdoors into speech models.to speech
models.

II. BACKGROUND

A. Speech Classification Tasks.

Recent speech classification tasks primarily rely
on DNNs. Common speech classification models in-
clude KWS models [28]–[30] and SV models [31],
[32]. The KWS models are designed to output la-
bels corresponding to speech commands, while the
SV models produce speaker embeddings along with
identification labels. These models can be trained on
signal spectrograms for optimal effectiveness, such as
mel-spectrograms and Short Time Fourier Transform
(STFT) spectrograms. Speech and image classification
models often share similar DNN architectures and
training optimization methods, rendering them equally
susceptible to backdoor attacks.

B. Backdoor Attacks for Speech Classification

Considering the characteristics of speech, speech
backdoor attacks can be classified into two categories.
(1) Methods based on the addition of extra noisy
speech and perturbation on signals (Noise trigger
or Perturbation trigger) [13], [15]–[21]. (2) Meth-
ods based on the modification of speech compo-
nents/elements (Element trigger) [14], [22], [23], [33].
Koffas et al. [15] proposed a series of perturbation
operations (e.g., pitch shift, reverberation, and chorus)
to perform digital music effects as a perturbation
trigger. The noise trigger also includes the low-volume
one-hot-spectrum [16] and ultrasonic sounds [13]. On
the other hand, Ye et al. [22], [33] proposed VSVC to
treat the timbre as a speech backdoor attack trigger.
Cai et al. [14] also demonstrated that the pitch and
timbre triggers could be combined as element triggers
for multi-target attacks, which gained excellent attack
effectiveness on speech classification models.

C. Speech Large Language Models

SLLMs emerged after the advent of large language
models (LLMs) [34] based on the autoregressive gen-
eration that aims to predict the following text. Most
SLLMs support embedding a pair of reference text and
reference speech into a token vector and a pre-trained
deep speech codec, forming the semantic representa-
tions. The semantic representations are treated as the
speech prompt on the token level for natural speech
generation. SLLMs can generate speech mimicking
the timbre or emotion toward reference speech from a



given text. Accordingly, a SLLM generation process
can be described as:

Sigt = SLLM(texts, textr, Sigr) (1)

The textr, Sigr respectively denote the reference text
and reference speech, and the texts, Sigt respectively
denote the linguistic content of input speech and
generative speech.

III. METHODOLOGY

A. Threat Model

This paper focuses on poisoning-based backdoor
attacks. There are some fundamental principles in-
volved in this scenario. The attacker can modify the
open-access training dataset into a poisoned dataset.
The victim models will be trained using this poisoned
dataset, and the user will deploy the models in the
operational environment. Specifically, we assume that
the attacker cannot change the parameter values, only
the training iterations related to the training process
(e.g., loss function, learning schedule, or the victim
models).

B. Adversary’s Goals

The attacker’s goals are stealthiness, effectiveness,
and robustness. Stealthiness means backdoor attacks
must avoid detection by both humans and machines,
with poisoned utterances appearing like regular ones.
Effectiveness requires high success rates with mini-
mal poisoning in tests. However, achieving high suc-
cess often necessitates many poisoned samples, which
diminishes stealth. Robustness ensures that attacks
can withstand simple detection and remain effective
against adaptive defenses in real-world situations.

C. The Backdoor Training and MGDA

We proposed a poisoning-label speech backdoor
attack called SPBA. First, we explain the backdoor
training process. To accomplish this, a specific trigger
and target label must be designated for each backdoor.
Furthermore, to enable the victim model to learn the
connection between the target labels and triggers, a
certain number of poisoned samples containing the
triggers need to be prepared. These samples are com-
monly referred to as poisoned inputs.

Given a speech classification model C and a speech
classification dataset D0 = {(xi, yi), i = 1, 2, ..., N},
The attacker aims to implant one or more types of
backdoors into the model for forming victim model Cv .
Accordingly, when the model’s input contains a trigger
(typically, only one trigger is present), the backdoor in
the model will be activated by the trigger. In this way,
the trigger t and the model’s backdoor are in a one-
to-one correspondence. When a trigger is hidden in
input, it is called poisoned input (x, t), and the model
accepted the input will output prediction yg , equal to
the attacker-specific label. We set the total number of
triggers to K. Then, we will describe the process of

the proposed SPBA, which includes three stages: (1)
Attack Stage, (2) Training Stage, (3) Inference Stage.

1) Attack Stage: We divide D0 into clean train
dataset Dc1 and clean test dataset Dc2 and un-
polluted subset Dc3. For constructing the poisoned
dataset, we prepared a speech prompt dataset Dpm =
{[(xi, ti), texti], ti ∈ Ts, i = 1, 2, ..., Ns}, where
the utterances contain various selected triggers Ts =
{tk, k = 1, 2, ...,K}. The Ns denotes the total number
of speech prompt datasets, and texti denotes the
content of each speech prompt. Then, the poisoned
subset Dps is derived as follows:

text_src = {STM(xj), xj ∈ Dc3} (2)
Dps = {xn

poi = SLLM(textn, [textm, xm]), (3)

textn ∈ text_src, [textm, xm] ∈ Dpm} (4)

For the details, we first begin by using a speech
transcription model (STM) to transcribe each utterance
in the unpolluted subset, which provides the source
transcripts. Then, we utilize the utterances in the
prompt dataset as reference inputs for the SLLM.
Next, we synthesize the poisoned subset Dps using
the source transcripts and the target trigger from the
prompt dataset. Each ground truth label of the poi-
soned sample is changed to the target label yg that
the attacker desires. The poisoned dataset Dp is the
combined total of Dps and Dc1. Finally, the poisoned
dataset is employed to train backdoored models during
the training stage.

2) Training Stage: We consider the backdoor attack
to be a multi-task learning problem, comprising both
the main and backdoor tasks, as illustrated below.

LT : y ← Cv(x) (5)
(LT∗, t) : yg ← Cv((x, t)) (6)

LT directs the model to learn how to map clean
inputs to their corresponding ground truth labels, while
(LT∗, t) guides the model to map poisoned inputs
containing trigger t to the target label set by the
attacker. However, if the number of trigger types that
can activate the model is increased, the poisoning rate
will also rise, resulting in a higher overall poisoning
rate. Accordingly, we propose employing each trigger
with a low poisoning rate. The amount of poisoning for
each trigger equals the total poisoned quantity divided
by the number of triggers. Nevertheless, the effective-
ness of each trigger will be diminished compared to
a single trigger attack because the poisoning number
is decreased for each trigger. To address this issue,
MGDA is applied to the training objectives. We set
the basic training objective L1 without MGDA as:

(LT∗, Ts) =
∑
t∈Ts

(LT∗, t) (7)

L1 = LT + (LT∗, Ts) (8)

For task losses {ℓi ∈ L1}, MGDA computes the
gradient separately from the gradients of the model
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Fig. 1. The illustration of SPBA backdoor framework. It includes three stages: (1)Attack stage. The attacker prepares a speech prompt
dataset for generating poisoned speech inputs containing more than one trigger that owns different speech components, such as timbres
and emotions. (2)Training Stage. The speech classifiers are trained with MGDA to balance the clean and backdoored tasks. (3)Inference
Stage. After the training stage, the classifiers are trained to backdoored models. The models will predict attacker-specific target labels
when inputted samples with triggers.

optimizer for each individual task ∇ℓi and calculates
the scaling coefficients λ1, ..., λk to minimize the sum:

min
λ1,...,λk

{∥∥∥∥ k∑
i=1

λi∇ℓi
∥∥∥∥2
2

∣∣∣∣ k∑
i

λi = 1, λi ≥ 1,∀i

}
(9)

Figure 1(b) illustrates how the attacker employs
MGDA across multiple training batch iterations. The
loss is computed using cross-entropy loss when a
batch comprises solely clean inputs and labels, and
the regular optimizer is applied for parameter updates.
In cases where a batch includes both poisoned inputs
with triggers and clean inputs, the MGDA algorithm is
activated to calculate the loss with coefficient balanc-
ing for each loss ℓi. Therefore, the training objective of
MGDA, also known as the balanced loss, is expressed
as follows:

Lba = λ1LT +

K∑
k=1

λk(LT∗ , t = k) (10)

3) Inference Stage: In the inference stage, we need
to determine whether the classifier has become a
qualified backdoored classifier. The backdoor classifier
should output its true label when presented with clean
utterances from the clean test dataset Dc2. Next, Dc2

is converted into a poisoned test dataset Dcp using
the SLLM trigger, while each true label is altered to
the target label. Finally, the poisoned inputs in Dcp

are processed through the backdoored classifier for
evaluation.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setting

Dataset and Models. We evaluate SPBA on the KWS
and SVs tasks. For the KWS task, we used the Google
Speech Commands v2 dataset [35]. The victim models
include ResNet18 [36], Attention-LSTM [29], KWS-
VIT [37], and EAT-S [30]. For the SVs task, we
utilized the VoxCeleb1 [38] dataset, with the victim
models being ECAPA-TDNN [32] and SincNet [39].
We randomly shuffled dataset Dc1 and divided it into
95% for the training set and 5% for the test set,
ensuring that the two sets are non-overlapping.
Baseline and Trigger Setup. We compare SPBA with
the most recent speech backdoor attacks, which are as
follows: (1) backdoor attack with pixel pattern (Bad-
Nets) [8], (2) position-independent noisy clip backdoor
attack (PIBA) [17], (3) dual adaptive backdoor attack
(DABA) [19], (4) ultrasonic voice as trigger (Ultra-
sonic) [13], (5) pitch boosting and sound masking
(PBSM) [23], and (6) voiceprint selection and voice
conversion (VSVC) [33].

We proposed that the SPBA can integrate multiple
triggers into a speech classifier. We established four
different configurations: (1) (w/o MGDA, K=3). It
used 3 triggers (including female, male, and angry) and
optimize the neural network without MGDA. (2) (w/o
MGDA, K=5). It used 5 triggers (including female,



male, angry, sad, and happy) without MGDA. (3)
(MGDA, K=3.) It utilized the same 3 triggers with
MGDA. (4) (MGDA, K=5.) It incorporated the same
5 triggers with MGDA. Specifically, the utterances,
including triggers, are selected from the ESD dataset
[40]. We used the Paraformer [41] as the STM in
Equation (2).
Backdoor Training Setup. For the KWS task, all
victim models were trained using the following pa-
rameters: a batch size of 64, a training epoch of 60,
and the Adam optimizer with a learning rate of 1e-4.
All utterances were segmented or padded to a duration
of 1 second. For the SVs task, the models were trained
with the following parameters: a batch size of 64 and
a training epoch of 100; the optimizer is Adam, with
a learning rate that decreases from 5e-4 to 1e-4, and
all utterances are segmented or padded to a duration
of 3 seconds.
Evaluation Metrics. The metrics include attack met-
rics and trigger metrics. (1) Attack metrics. We use
three metrics: Attack Success Rate (ASR), Accuracy
Variance (AV), and Poisoned Number (PN) to assess
the effectiveness of the backdoor attack. ASR mea-
sures the backdoor attack performance on the test
dataset. AV indicates the model’s prediction accuracy
variance for training before and after the backdoor
attacks. Compared with the same datasets, PN directly
reflects the costs associated with different triggers for
backdoor embedding. (2) Trigger metrics. Trigger met-
rics include Mean Opinion Score (MOS) and trigger
accuracy (TA), which demonstrate the effectiveness of
the triggers. We use MOS to evaluate the quality of
the poisoned utterances. Furthermore, we utilize the
state-of-the-art open-source multimodal model, Qwen-
Audio [42], to assess whether the emotional or timbre
attributes of the poisoned samples align with the
triggers. The outcome of this assessment is known as
trigger accuracy (TA). The timbre and trigger prompts
fed into Qwen-Audio include the poisoned samples
and texts: "Given the known emotions: angry, happy,
and sad, please determine the emotional category of
the following speech." and "Are the following two
audio samples from the same speaker?". We determine
the trigger samples’ emotional category and timbre
similarity based on the model’s feedback.

B. Main Results

Baselines Attack Results. We present the AV, ASR,
and PN values in Tables I and II. We utilized the
PN instead of the conventional metric poisoning rate
(PR) to more intuitively observe the quantity of each
trigger used in the backdoor attack experiments aimed
at achieving the best ASR.

The tables present the backdoor attack baselines
from BadNets to VSVC. The baselines utilizing pertur-
bation triggers (including BadNets, Ultrasonic, PIBA,
and DABA) exhibit AV values exceeding 1.0% and low
ASR values (below 99% on average). This indicates

that these triggers possess strong attack capabilities
but lack stealthiness. Because these triggers disrupt
the naturalness of speech inputs while generating poi-
soned samples, they significantly reduce classification
accuracy during backdoor training, resulting in high
AV values. Additionally, they require high PN values
ranging from 300 to 500 per trigger. In contrast,
methods based on element triggers cause minimal
disruption to speech, leading to lower AV values. Their
attack effectiveness is also superior, as shown by lower
PN values ranging from 200 to 300 per trigger.
SPBA Attack Results. We conducted experiments
with 3 and 5 triggers without using MGDA, which is
equivalent to merely increasing the number of triggers.
We found that the PN value for each trigger was
relatively high (ranging from 250 to 350), while the
ASR values were lower than the baselines. The results
of the experiments conducted with 3 and 5 triggers
using MGDA indicate that each trigger requires only
90 to 130 (equivalent to 450/5 to 390/3) poisoned
samples to achieve the best ASR values under the
MGDA and balanced loss. These experimental findings
demonstrate that implementing the MGDA algorithm
significantly enhances the attack success rate and op-
erational efficiency of each trigger while keeping the
overall poisoning rate normal.
Trigger Evaluation. In the MOS evaluation, ten in-
dividuals were invited to participate in an auditory
assessment. Each person randomly listened to 30 poi-
soned samples along with their corresponding clean
speech samples. They were asked to judge whether
the two sentences conveyed the same content, whether
they sounded natural, and to provide scores ranging
from 0 to 5. In the TA evaluation, we employed
Qwen-Audio to calculate the accuracy of the poisoned
samples and their triggers. Specifically, TA can be
described using Micro-F1 scores. The final results of
the evaluation are presented in Table III. The results
indicate that the poisoned samples generated by the
proposed SLLM trigger demonstrate excellent speech
quality and high trigger similarity.

The experimental results in Table III indicate that
our method and VSVC nearly do not compromise the
quality of speech, resulting in MOS values that are
close to those of the ground truth speech. In contrast,
the BadNets and PBSM methods have made harmful
alterations to the spectrogram and fundamental fre-
quency of the speech, leading to a decline in speech
quality. Consequently, their MOS values are lower
than those of the ground truth samples. We assess
emotional and speaker similarity using F1 values in
the trigger accuracy. The F1 values demonstrate that
the performance of the SLLM trigger aligns with the
anticipated effects.

C. Ablation Study

Attack with Different Emotion Targets. Most of
the utterances in the dataset are classified as neu-



TABLE I
THE AV (%), ASR (%), AND PN OF BASELINES AND SPBA ON KWS TASK.

Methods ResNet18 Attention-LSTM KWS-VIT EAT-S
BadNets 0.98/99.97/550 1.21/99.98/550 1.01/99.98/600 1.20/99.96/550
Ultrasonic 2.67/97.82/350 2.92/97.68/400 3.01/96.92/400 2.82/97.25/400
PIBA 2.68/94.21/300 2.92/93.58/350 3.15/94.62/350 3.61/93.59/350
DABA 3.65/93.25/450 4.21/92.52/400 3.91/92.55/450 4.55/93.45/450
PBSM 0.58/99.98/300 0.54/99.88/300 0.72/99.94/350 0.66/99.87/350
VSVC 0.51/99.98/250 0.50/99.78/250 0.78/99.92/300 0.56/99.93/300
SPBA (w/o MGDA, K=3) 1.47/98.82/750 1.67/97.82/750 1.50/96.90/900 1.78/97.91/900
SPBA (w/o MGDA, K=5) 1.27/97.92/1000 1.35/97.35/1250 1.47/96.35/1250 1.19/98.35/1000
SPBA (MGDA,K=3) 0.42/99.92/360 0.53/99.15/330 0.74/99.65/300 0.69/99.75/330
SPBA (MGDA,K=5) 0.62/99.95/450 0.52/99.65/500 0.84/99.76/400 0.80/99.56/500

TABLE II
THE AV (%), ASR (%), AND PN OF BASELINES AND SPBA ON SVS TASK.

Methods ECAPA-TDNN SincNet
BadNets 1.04/99.85/350 1.26/99.80/400
Ultrasonic 2.05/96.75/400 2.67/95.12/450
PIBA 4.16/92.15/300 3.95/93.01/350
DABA 3.98/94.05/350 4.65/92.81/400
PBSM 0.72/99.88/250 0.64/99.92/300
VSVC 0.72/99.91/250 0.75/99.93/300
SPBA (w/o MGDA, K=3) 1.44/98.01/900 1.21/97.21/1050
SPBA (w/o MGDA, K=5) 1.34/95.89/1500 1.14/96.77/1250
SPBA (MGDA,K=3) 0.84/99.55/360 0.77/99.25/390
SPBA (MGDA,K=5) 0.68/99.94/400 0.63/99.95/450

TABLE III
THE AVERAGE MOS AND SER ACCURACY

Average MOS
Clean BadNets PBSM VSVC SPBA
4.12 3.67 3.72 3.94 3.98

Trigger Accuracy(F1)

VSVC SPBA
Male Female Angry Sad Happy

0.7354 0.7498 0.7378 0.9789 0.9702 0.9688

tral speech. Therefore, we connected one of the
{Angry,Happy, Sad} as the target emotions to spe-
cific target classification labels. As shown in Fig-
ure 2(a), we found that intense emotions such as
{Angry, and Happy} can achieve the highest ASR
most quickly, while the poisoned number gradually
reached 110. In other words, the classification models
are more sensitive to these emotions.
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Fig. 2. ASR values with different emotion triggers.

Attack with Different Gender Targets. We used spe-
cific male and female timbres as triggers and explored
the impact of these two different genders on ASR. As
shown in Figure 2(b), in the backdoor training with
multiple triggers proposed in this paper, there is no

significant difference in the roles played by triggers of
different genders.

V. CONCLUSION

This paper examines how embedding multiple back-
doors into a DNN model simultaneously can withstand
common backdoor defense strategies and proposes the
SPBA method to accomplish this goal. The SPBA
is a backdoor attack technique involving multiple
triggers generated by the SLLM. Additionally, we use
a multimodal model to assess the poisoned samples.
After training with SPBA, emotional or specific gen-
der utterances can cause the victim model to make
incorrect predictions. We carried out backdoor attack
experiments on two speech classification tasks. The
results of these experiments highlight the remarkable
effectiveness of the SPBA. Furthermore, we discovered
that different emotions used as target labels lead to
varying trigger efficiency. Intense emotions produce
better outcomes, while triggers related to different
genders play a similar role. The proposed method
aims to offer insights into backdoor attacks within the
speech domain.
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D. Song, A. Mądry, B. Li, and T. Goldstein, “Dataset security
for machine learning: Data poisoning, backdoor attacks, and
defenses,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 45, no. 2, pp. 1563–1580, 2022.

[2] Y. Li, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor learning: A
survey,” IEEE Transactions on Neural Networks and Learning
Systems, 2022.

[3] E. Bagdasaryan and V. Shmatikov, “Blind backdoors in
deep learning models,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 1505–1521.



[4] A. Turner, D. Tsipras, and A. Madry, “Label-consistent back-
door attacks,” arXiv preprint arXiv:1912.02771, 2019.

[5] J. Dai, C. Chen, and Y. Li, “A backdoor attack against lstm-
based text classification systems,” IEEE Access, vol. 7, pp.
138 872–138 878, 2019.

[6] X. Pan, M. Zhang, B. Sheng, J. Zhu, and M. Yang, “Hidden
trigger backdoor attack on {NLP} models via linguistic style
manipulation,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 3611–3628.

[7] C. Chen and J. Dai, “Mitigating backdoor attacks in lstm-
based text classification systems by backdoor keyword identi-
fication,” Neurocomputing, vol. 452, pp. 253–262, 2021.

[8] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets:
Evaluating backdooring attacks on deep neural networks,”
IEEE Access, vol. 7, pp. 47 230–47 244, 2019.

[9] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A
natural backdoor attack on deep neural networks,” in Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part X 16. Springer, 2020,
pp. 182–199.

[10] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted back-
door attacks on deep learning systems using data poisoning,”
arXiv preprint arXiv:1712.05526, 2017.

[11] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor
attacks,” Advances in neural information processing systems,
vol. 31, 2018.

[12] S. Zhao, X. Ma, X. Zheng, J. Bailey, J. Chen, and Y.-G. Jiang,
“Clean-label backdoor attacks on video recognition models,” in
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2020, pp. 14 443–14 452.

[13] S. Koffas, J. Xu, M. Conti, and S. Picek, “Can you hear it?
backdoor attacks via ultrasonic triggers,” in Proceedings of
the 2022 ACM workshop on wireless security and machine
learning, 2022, pp. 57–62.

[14] H. Cai, P. Zhang, H. Dong, Y. Xiao, S. Koffas, and Y. Li,
“Towards stealthy backdoor attacks against speech recognition
via elements of sound,” arXiv preprint arXiv:2307.08208,
2023.

[15] S. Koffas, L. Pajola, S. Picek, and M. Conti, “Going in
style: Audio backdoors through stylistic transformations,” in
ICASSP 2023-2023 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2023,
pp. 1–5.

[16] T. Zhai, Y. Li, Z. Zhang, B. Wu, Y. Jiang, and S.-T. Xia, “Back-
door attack against speaker verification,” in ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2021, pp. 2560–2564.

[17] C. Shi, T. Zhang, Z. Li, H. Phan, T. Zhao, Y. Wang, J. Liu,
B. Yuan, and Y. Chen, “Audio-domain position-independent
backdoor attack via unnoticeable triggers,” in Proceedings of
the 28th Annual International Conference on Mobile Comput-
ing And Networking, 2022, pp. 583–595.

[18] P. Liu, S. Zhang, C. Yao, W. Ye, and X. Li, “Backdoor
attacks against deep neural networks by personalized audio
steganography,” in 2022 26th International Conference on
Pattern Recognition (ICPR). IEEE, 2022, pp. 68–74.

[19] Q. Liu, T. Zhou, Z. Cai, and Y. Tang, “Opportunistic back-
door attacks: Exploring human-imperceptible vulnerabilities
on speech recognition systems,” in Proceedings of the 30th
ACM International Conference on Multimedia, 2022, pp.
2390–2398.

[20] J. Xin, X. Lyu, and J. Ma, “Natural backdoor attacks on speech
recognition models,” in International Conference on Machine
Learning for Cyber Security. Springer, 2022, pp. 597–610.

[21] Y. Luo, J. Tai, X. Jia, and S. Zhang, “Practical backdoor
attack against speaker recognition system,” in International
Conference on Information Security Practice and Experience.
Springer, 2022, pp. 468–484.

[22] Z. Ye, T. Mao, L. Dong, and D. Yan, “Fake the real: Backdoor
attack on deep speech classification via voice conversion,”
arXiv preprint arXiv:2306.15875, 2023.

[23] H. Cai, P. Zhang, H. Dong, Y. Xiao, and S. Ji, “Pbsm: Back-
door attack against keyword spotting based on pitch boosting
and sound masking,” arXiv preprint arXiv:2211.08697, 2022.

[24] W. Yao, J. Yang, Y. He, J. Liu, and W. Wen, “Imperceptible
rhythm backdoor attacks: Exploring rhythm transformation

for embedding undetectable vulnerabilities on speech recog-
nition,” Neurocomputing, vol. 614, p. 128779, 2025.

[25] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and
B. Y. Zhao, “Neural cleanse: Identifying and mitigating back-
door attacks in neural networks,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 707–723.

[26] C. Wang, S. Chen, Y. Wu, Z. Zhang, L. Zhou, S. Liu, Z. Chen,
Y. Liu, H. Wang, J. Li et al., “Neural codec language models
are zero-shot text to speech synthesizers,” arXiv preprint
arXiv:2301.02111, 2023.

[27] J.-A. Désidéri, “Multiple-gradient descent algorithm (mgda)
for multiobjective optimization,” Comptes Rendus Mathema-
tique, vol. 350, no. 5-6, pp. 313–318, 2012.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[29] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. Cottrell,
“A dual-stage attention-based recurrent neural network for time
series prediction,” arXiv preprint arXiv:1704.02971, 2017.

[30] A. Gazneli, G. Zimerman, T. Ridnik, G. Sharir, and A. Noy,
“End-to-end audio strikes back: Boosting augmentations to-
wards an efficient audio classification network,” arXiv preprint
arXiv:2204.11479, 2022.

[31] L. Wan, Q. Wang, A. Papir, and I. L. Moreno, “General-
ized end-to-end loss for speaker verification,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 4879–4883.

[32] B. Desplanques, J. Thienpondt, and K. Demuynck, “Ecapa-
tdnn: Emphasized channel attention, propagation and aggre-
gation in tdnn based speaker verification,” arXiv preprint
arXiv:2005.07143, 2020.

[33] H. Cai, P. Zhang, H. Dong, Y. Xiao, and S. Ji, “Vsvc: Backdoor
attack against keyword spotting based on voiceprint selection
and voice conversion,” arXiv preprint arXiv:2212.10103, 2022.

[34] J. K. Kim, M. Chua, M. Rickard, and A. Lorenzo, “Chatgpt
and large language model (llm) chatbots: The current state
of acceptability and a proposal for guidelines on utilization
in academic medicine,” Journal of Pediatric Urology, vol. 19,
no. 5, pp. 598–604, 2023.

[35] P. Warden, “Speech commands: A dataset for
limited-vocabulary speech recognition,” arXiv preprint
arXiv:1804.03209, 2018.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–
778.

[37] A. Berg, M. O’Connor, and M. T. Cruz, “Keyword transformer:
A self-attention model for keyword spotting,” arXiv preprint
arXiv:2104.00769, 2021.

[38] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb:
a large-scale speaker identification dataset,” arXiv preprint
arXiv:1706.08612, 2017.

[39] M. Ravanelli and Y. Bengio, “Speaker recognition from raw
waveform with sincnet,” in 2018 IEEE spoken language tech-
nology workshop (SLT). IEEE, 2018, pp. 1021–1028.

[40] K. Zhou, B. Sisman, R. Liu, and H. Li, “Emotional voice con-
version: Theory, databases and esd,” Speech Communication,
vol. 137, pp. 1–18, 2022.

[41] Z. Gao, S. Zhang, I. McLoughlin, and Z. Yan,
“Paraformer: Fast and accurate parallel transformer for
non-autoregressive end-to-end speech recognition,” arXiv
preprint arXiv:2206.08317, 2022.

[42] Y. Chu, J. Xu, X. Zhou, Q. Yang, S. Zhang, Z. Yan, C. Zhou,
and J. Zhou, “Qwen-audio: Advancing universal audio under-
standing via unified large-scale audio-language models,” arXiv
preprint arXiv:2311.07919, 2023.


