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Abstract
Speech classification systems based on deep learning are

vulnerable to backdoor attacks, causing the model’s predictions
to deviate from normal behavior. Existing speech backdoor
methods often produce poisoned samples by perceptible modi-
fications, which reduce the stealthiness of the attack and make
it easier to detect. To improve stealthiness, this paper proposed
the Latent Rearrangement Backdoor Attack (LRBA), a novel
backdoor attack framework utilizing the latent space in a pre-
trained VITS model to achieve an imperceptible attack. Ex-
plicitly, we manipulate the latent representations by utilizing
the normalizing flow of VITS to generate rearranged utterances,
where the rearranged semantics can be associated with the at-
tacker’s specific target label, achieving a backdoor attack. Re-
sults show that our method achieves an excellent attack success
rate with a very low poisoning rate and maintains a high mean
opinion score, outperforming existing methods in effectiveness
and stealthiness.
Index Terms: Backdoor Attacks, Speech Classification Sys-
tems, VITS

1. Introduction
Speech classification systems, such as keyword spotting
(KWS) [1], have become integral to modern voice-controlled
applications, ranging from smart home devices to biometric au-
thentication. To achieve high accuracy, these systems increas-
ingly rely on deep neural networks (DNNs) trained on large-
scale datasets. However, the outsourcing of data collection and
model training to third-party platforms may lead to significant
security risks, particularly performed as backdoor attacks.

In recent years, studies have found that DNNs are poten-
tially vulnerable to backdoor attacks [2]. The AI services that
users obtain from third-party platforms may come from back-
doored models. When input with data belonging to a specific
category or exhibiting certain features, the speech model will
behave abnormally for the backdoor is triggered. To be spe-
cific, the backdoored model behaves normally on clean inputs
but misclassifies any input embedded with the trigger into an
attacker-specified label.

Backdoor attacks have been studied in the image and text
classification domain [3, 4, 5, 6]. Li et al. [7] demonstrated
that most backdoor attacks are implemented using the poisoned-
label method, where image triggers typically consist of noisy
pixel patterns or objects with distinctive markings. Moreover,
recent studies have shown that similar perturbation-based tech-
niques can also be used to generate triggers for effective back-
door attacks in speech models. Existing audio backdoor triggers
primarily mix certain noise clips or other speech segments into
clean utterances. For instance, ultrasonic pulses [8], one-hot-

spectrum noise [9], perturbation operations [10]. Sadly, these
methods need a high poisoning rate and are easily detected by
automatic or human hearing.

Recently, some researchers explored the speech trigger
function by modifying the speech attributes [11]. This type
of attack is believed to be capable of linking specific speech
attributes to target labels. For example, pitch boosting [12],
timbre conversion [13, 14, 15], phoneme substitution [16] and
rhythm alteration [11]. However, modifications in timbre and
pitch can be detected by automatic speech recognition task;
phoneme substitution and rhythm alteration are easily targeted
for defense.

In this paper, we focus on the speech attribute ‘content’ and
propose the Latent Rearrangement Backdoor Attack (LRBA).
Experimental results demonstrate that our method achieves a
high attack success rate with a very low poisoning rate. Our
contributions can be summarized as follows:

1. We utilized a pre-trained VITS model as a trigger function to
generate imperceptible triggers and finished speech backdoor
attacks on speech classification task.

2. Our proposed method modifies the latent representations of
benign utterances through slices clustering and rearrange-
ment at the phoneme level. The altered latent representa-
tions are then reconstructed via a reverse process to generate
natural-sounding utterances.

3. Our experiments on speech classification task showed that
the method can achieve good attack effectiveness and stealth-
iness.

2. Background
2.1. Latent Variance in VITS

Variational Inference with adversarial learning for end-to-end
Text-to-Speech (VITS) [17] is a state-of-the-art generative
model that synthesizes high-fidelity speech by leveraging varia-
tional autoencoders (VAEs), normalizing flows, and generative
adversarial training. A critical component of VITS is its ability
to model speech in a latent space, where the posterior encoder
compresses input audio into a structured latent representation
z. This latent variable is then transformed through a series of
invertible flow operations fθ(z), aligning it with a prior distri-
bution conditioned on text inputs. The hierarchical nature of
the latent space in VITS allows it to capture fine-grained acous-
tic details (e.g., phoneme-level variations) and global prosodic
features (e.g., rhythm and pitch) while maintaining disentangle-
ment properties.

Recent studies [17, 18] highlight that perturbations in the
latent space of generative models like VITS can induce seman-
tically consistent changes in synthesized speech without intro-
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Figure 1: Pipeline of the proposed framework LRBA. During the attack stage, benign utterances is converted into poisoned utterances
via phoneme rearrangement in the VITS latent space. The training stage jointly optimizes classification accuracy on clean data and
backdoor activation. In the inference stage, triggered inputs are misclassified to the target label.

ducing audible artifacts. This property makes latent representa-
tions a promising yet understudied vector for designing stealthy
backdoor triggers.

2.2. Speech Classification Task

Speech classification tasks, particularly keyword spotting
(KWS), are fundamental to enabling efficient voice interaction
in resource-constrained edge devices. KWS systems aim to de-
tect predefined keywords from continuous audio streams while
filtering out non-target speech or background noise. Tradi-
tional approaches relied on handcrafted acoustic features (e.g.,
MFCCs) paired with hidden Markov models (HMMs) [19].
However, modern systems predominantly leverage deep neu-
ral networks (DNNs) for superior accuracy and robustness,
see [20, 21, 22, 23].

3. Methodology
3.1. Threat Model

In the context assumed in this paper, we employ a third-party
data poisoning attack. The attacker tampers with the data con-
tent and fabricates labels during the data preparation phase be-
fore model training. We assume that the attacker cannot ac-
cess the user model and cannot intervene in the model’s training
when the training process starts.

3.2. Generation of Poisoned Inputs

The poisoned inputs are generated by the trigger function Ft(x)
for phoneme rearrangement in the latent space. In the proposed
method, we utilized the decoder Mdec, posterior encoder Menc

and the flow model Mflow in VITS, and designed a rearrange-
ment module Mre and a clustering algorithm incidentally. We
set the input of speech classification models as xin. We assume
that the linguistic content of the input speech can be encoded as
C different phonemes by the tokenizer.

First, Through forwarding the posterior encoder and flow
model respectively, the speech hidden latent Hx is derived as :

Hx = Mflow(z), where z = Menc(xin) (1)

The z denotes the posterior variational representation of the
inputted spectrogram. Accordingly, the Hx jointly contains
the speech linguistic content and timbre information. We use
a dedicated K-means clustering algorithm (Kmean) to get
the phoneme distribution instead of complex forced alignment
method. The phoneme distribution is indicated as a continuous
index sequence {Lc

t} as follows:

[l11, ..., l
1
n1

l21, ..., l
2
n2

, ..., lCT ] = Kmean(Hx) (2)

The c, t in Lc
t denotes the phoneme category and time sequence

index respectively. It is noted that Hx ∈ RT,D , the D is the
number of hidden dimensions. The Kmean can categorize se-
mantic representations into distinct clusters without altering the
actual linguistic content. For the utterances in the speech com-
mand dataset, it is easy to ensure the number of C for each
command, which can be derived by direct hearing or the tran-
scription of an automatic speech recognition model.

Next, given the distribution of phoneme categories, we de-
sign a category rearrangement function Mre to reorder the seg-
ments of phonemes from different categories. When C = 1, no
operation is performed. When C = 2, the rearrangement opera-
tion swaps the positions of the segments from the two phoneme
categories. However, when C > 2, the rearrangement operation
directly reverses the segments of different phonemes. Then, we
recover the rearranged speech from the rearranged Hx as fol-
lows:

xout = Mdec[M
−1
flow(Mre(Hx))] = Ft(xin) (3)

The Ft includes all the operations from the input spectrogram
to the output rearranged speech xout.

3.3. Poisoned Dataset Generation

We embed the backdoor into speech classification models
through the poisoned-label attack. We denote the original
clean speech classification dataset as Dr = {(xi, yi), i =
1, 2, ..., N}. It is noted that the xi, yi denote the input for
speech classification models and the true label(also clean label).
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Table 1: Attack results on GSCv2-10 dataset towards KWS task. Each item shows evaluations AV/ASR in the table.

Trigger Resnet-34 Attention-LSTM KWS-ViT EAT-S
BadNets 1.97 / 96.48 2.04 / 97.05 2.15 / 96.80 2.68 / 97.02
PIBA 2.68 / 94.21 2.92 / 93.58 3.15 / 94.62 3.61 / 93.59
DABA 3.65 / 93.25 4.21 / 92.52 3.91 / 92.55 4.55 / 93.45
Ultrasonic 1.24 / 95.42 1.56 / 96.41 1.72 / 93.57 1.64 / 95.64
PBSM 0.78 / 99.95 0.82 / 99.85 0.97 / 99.76 0.69 / 99.85
VSVC 0.51 / 99.98 0.50 / 99.97 0.67 / 99.92 0.56 / 99.93
PSBA 0.48 / 99.92 0.83 / 99.77 0.76 / 99.90 0.71 / 99.83
RSRT(Squeeze) 0.66 / 99.99 0.54 / 99.93 0.63 / 99.89 0.82 / 99.97
Ours 0.52 / 99.97 0.44 / 99.95 0.60 / 99.91 0.73 / 99.96

Table 2: Attack results on GSCv2-30 dataset towards KWS task. Each item shows evaluations AV/ASR in the table.

Trigger Resnet-34 Attention-LSTM KWS-ViT EAT-S
BadNets 2.05 / 94.62 2.15 / 95.05 2.67 / 96.66 2.78 / 96.67
PIBA 2.88 / 92.61 3.15 / 94.65 3.95 / 93.78 4.21 / 92.18
DABA 3.98 / 92.45 5.05 / 91.68 4.25 / 95.78 5.01 / 94.12
Ultrasonic 2.04 / 93.32 2.25 / 95.87 2.18 / 92.64 2.50 / 92.61
PBSM 0.99 / 99.92 1.55 / 99.05 1.08 / 99.15 1.45 / 98.50
VSVC 0.68 / 98.05 1.22 / 99.55 1.13 / 99.25 1.79 / 98.15
PSBA 0.98 / 99.66 1.68 / 99.73 1.40 / 99.21 1.34 / 99.90
RSRT(Squeeze) 1.02 / 99.52 1.49 / 99.97 1.27 / 99.05 1.42 / 99.95
Ours 0.92 / 99.83 1.54 / 98.96 1.33 / 99.12 1.35 / 99.34

The xi can refer to either a speech signal or spectrogram. The
Dr is divided into two clean subsets Ds1 = {(xj , yj), j =
1, 2, ..., N1} and Ds2 = {(xk, yk), k = 1, 2, ..., N2} by
the poisoning number N2 (also poisoning rate p = N2/N ).
Then, we apply the trigger function Ft to each samples in Ds2,
and generate the poisoned subset Drp = {Ft(xk), yT ), k =
1, 2, ..., N2}. The yT is the attacker-specific label and also
belongs to the categories of true labels. Finally, the poisoned
dataset Dp is mixed with the clean subset Ds1 and the poisoned
subset Drp. The attacker can train the clean speech classifica-
tion models on the poisoned dataset and embed the backdoor
into them.

3.4. Backdoor Attack Pipeline

The backdoor attack pipeline consists of three stages: the attack
stage, the training stage, and the inference stage, as shown in
Figure 1.
Attack Stage. The attacker prepares a poisoned dataset and sets
a target label, which is different from the true label of the poi-
soned input. The target label is then bound to the trigger func-
tion. Specifically, the attacker selects a subset of clean samples
from the original dataset and applies the proposed phoneme re-
arrangement trigger Ft(x) to generate poisoned samples. These
poisoned samples are assigned the attacker-specified target la-
bel yT , forming the poisoned dataset Dp.
Training Stage. The victim model Mcls is trained on the poi-
soned dataset Dp. The training objective has two aspects: 1)
Main Task: Minimize classification loss on clean samples to
maintain normal behavior:

Lclean = E(x,y)∼Ds1
[CE(Mcls(x), y)] ,

where CE denotes cross-entropy loss. 2) Backdoor Task: Asso-
ciate the trigger Ft(x) with the target label yT :

Lbackdoor = E(x,y)∼Drp [CE(Mcls(Ft(x)), yT )] .

The training loss consists of both Lclean and Lbackdoor,
Through the optimization process, the model is trained to ac-
curately classify clean inputs, yet misclassify inputs with the
trigger as the target label yT .
Inference Stage. The attacker activates the backdoor by feed-
ing inputs embedded with the latent-space trigger Ft(x). For
a clean input x, the model outputs the true label y. However,
when x is modified by Ft(x), the model predicts yT due to the
learned correlation between the rearranged phoneme patterns
and the target label. Notably, the trigger does not alter audible
content (e.g., the command “no” as /noU/ is pronounced closer
to “own” when rearranged), ensuring stealthiness.

4. Experiments and Results
4.1. Experiments Settings

Dataset. We utilized the Google Speech Commands Dataset
v2 (GSCv2) [24] as our experimental dataset. Specifically, we
selected 23,726 audio samples with 10 labels (dubbed ‘GSCv2-
10’) and 64,721 audio samples with 30 labels (dubbed ‘GSCv2-
30’) for a comprehensive comparison. We divide the dataset
into the training, validation, and test sets in a ratio of 90:5:5.
The poisoned samples only exist in the training set.
Victim models. We choose speech classification as our at-
tack task, so we select several classic classification models
used in classification tasks as our attack targets. These in-
clude:(1) ResNet34 [20], which is a classic classification model
from the early days of speech recognition tasks. (2) Attention-
LSTM [22], which adds an attention mechanism, enabling se-
quence modeling capabilities. (3) KWS-VIT [25], which com-
bines transformer architecture.(4) EAT-S [23], which is a typical
end-to-end model that combines CNNs.
Baseline. We compare our attack with the latest speech
backdoor attacks. They are as follows: (1) Backdoor at-
tack with pixel pattern (BadNets) [3], (2) Position-independent
backdoor attack (PIBA) [26], (3) Dual-adaptive backdoor at-
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Table 3: The MOS evaluation and the max PN of GSCv2-10 & GSCv2-30 dataset for different backdoor attack methods.

\ BadNets PIBA DABA Ultrasonic PBSM VSVC PSBA RSRT
(squeeze) Ours

MOS 3.43 3.70 3.62 3.38 3.74 3.90 3.89 3.92 3.96
PN of GSCv2-10 350 350 450 450 400 300 200 200 200
PN of GSCv2-30 450 450 600 600 450 350 300 300 300

tack (DABA) [27], (4) Ultrasonic voice as the trigger (Ultra-
sonic) [8], (5) Pitch boosting and sound masking (PBSM) [12],
(6) Voiceprint selection and voice conversion (VSVC) [15], (7)
Phoneme Substitution (PSBA) [16] and (8) Random Spectro-
gram Rhythm Transformation (RSRT) [11].
Training Setup. We trained all the victim models with the same
hyper-parameters. The batch size is 64. The weights are op-
timized by Adam optimizer with a learning rate of 1e-4 and
cross-entropy loss function. We trained 30 epochs to make all
models converge. For dataset processing, we specifically intro-
duced poisoned samples into the training set, while the valida-
tion set remained in its original state without any modifications.
All experiments were conducted using the PyTorch framework
on Nvidia RTX 4090 GPUs.
Evaluation Metrics. We set evaluation criteria based on the
four key objectives of backdoor attacks mentioned in the previ-
ous section. For effectiveness, we examine the Accuracy Vari-
ance (AV ) and the Attack Success Rate (ASR) for each attack.
The AV represents the model’s accuracy change after the trig-
ger is applied during training. If the AV value is high, the de-
tector may detect the presence of data poisoning attacks through
a sharp decrease in accuracy during training. The ASR stands
for the hit rate of the trigger on the test set. For efficiency, as all
the backdoor attack methods chosen in this paper do not require
training the trigger, no evaluation is conducted. For stealthiness,
we use the Mean Opinion Score (MOS) from ITU-T Recom-
mendation P.800 and the Poisoning number (PN ) as subjective
and objective evaluations respectively. The PN is the absolute
number of poisoned samples in the training set and is a reflec-
tion of the poisoning rate.

4.2. Results and Analysis

Attack Result. Tables 1 and 2 present the attack performance
on GSCv2-10 and GSCv2-30 datasets across different victim
models. Our method achieves competitive Attack Success
Rates (ASR > 99% on GSCv2-10 and > 98% on GSCv2-30)
while maintaining minimal Accuracy Variance (AV < 1.54%
across all models), demonstrating both high attack effective-
ness and minimal impact on clean data performance. Notably,
LRBA outperforms traditional methods (e.g., BadNets, PIBA)
in AV and matches state-of-the-art speech-specific attacks (e.g.,
VSVC, PSBA) in ASR. This highlights the advantage of latent-
space manipulation in balancing stealthiness and effectiveness.
Stealthiness Evaluation. The stealthiness evaluation in Table 3
further validates our claims. LRBA achieves the highest MOS
(3.96), indicating that poisoned samples are perceptually indis-
tinguishable from clean speech. Compared to waveform-level
trigger Ultrasonic (3.38) or spectrogram-based method RSRT
(3.92), our latent-space approach better preserves speech nat-
uralness. Additionally, LRBA requires fewer PN (200 for
GSCv2-10 and 300 for GSCv2-30) than most baselines, reduc-
ing the risk of detection during dataset inspection. For instance,
VSVC and PSBA achieve comparable stealthiness but require
50% more poisoned samples, while PBSM demands double the

poisoning rate (PN = 400) despite its high ASR.
The results also reveal model-agnostic effectiveness. On

transformer-based KWS-ViT, LRBA achieves high ASR and
low AV , outperforming RSRT and PSBA. This suggests that la-
tent triggers exploit hierarchical features learned by diverse ar-
chitectures, whereas spectrogram-level attacks may fail against
models with robust preprocessing.

5. Ablation Study
5.1. Attacked Phoneme Categories

We evaluate LRBA on commands with varying phoneme struc-
tures. For command “no”, swapping latent segments achieves
ASR = 99.98% (ResNet-34) with MOS = 4.01. For com-
mand “off”, reversing latent clusters retains a high ASR while
slightly lowering MOS to 3.89 due to subtle rhythm inconsis-
tencies. This confirms LRBA’s adaptability to diverse phonetic
structures without compromising attack success.

5.2. Cluster Number

We analyze the impact of cluster number K mismatch. When
attacking “stop” with K = 3, ASR remains high (99.72% on
EAT-S) but MOS drops to 3.77 (vs. 3.96 for K = 4), as under-
clustering merges distinct phonemes, introducing minor spec-
tral artifacts. Conversely, over-clustering (K = 5) marginally
improves MOS (3.93) but increases computational overhead
without enhancing ASR (99.81%). Thus, setting K equal to
the ground-truth phoneme count optimally balances stealthiness
and efficiency.

6. Conclusion
In this paper, we introduced LRBA, a novel backdoor attack
framework that utilizes the latent space of a pre-trained VITS
model to create stealthy and effective triggers for speech clas-
sification systems. By manipulating the latent representations
of utterances, our method generates poisoned samples that are
virtually indistinguishable from clean samples while achieving
a high attack success rate with minimal poisoning. Our ex-
periments on the Google Speech Commands Dataset demon-
strated that LRBA outperforms existing backdoor attack meth-
ods in terms of both attack effectiveness and stealthiness. The
ability to operate in the latent space allows our method to by-
pass traditional detection mechanisms, making it a significant
threat to the security of speech-based applications. Future work
could explore the robustness of LRBA against advanced defense
mechanisms and its applicability to other speech-related tasks,
such as speech recognition and speaker verification.
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