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Abstract. In recent years, speaker verification (SV) systems have be-
come ubiquitous across security-critical applications. While these sys-
tems encode speaker identities into high-dimensional embeddings, they
remain vulnerable to adversarial attacks that manipulate these embed-
dings, so it is essential for us to expose as many “blind spots” of speaker
verification systems as possible. Existing attacks predominantly inject
additive noise, which often compromises speech naturalness and lacks se-
mantic control. In this paper, we propose the Timbre Adversarial attack
(TimbreAdv), a novel paradigm that exploits vocal tract characteristics
to deceive SV systems. Our framework introduces hierarchical feature
disentanglement, feature-level timbre blending, and multi-object adver-
sarial optimization to generate adversarial samples under the setting of
black-box. We use comprehensive metrics to evaluate our method, and
the results show great attack effectiveness and stealthiness.

Keywords: Adversarial Attacks · Speaker Verification Systems · Multi-
object Adversarial Optimization.

1 Introduction

Speaker verification systems [1], which authenticate individuals based on unique
vocal characteristics, have become integral to modern security infrastructures.
These systems are widely deployed in biometric authentication (e.g., smartphone
unlocking, banking voiceprints), forensic analysis (e.g., courtroom evidence val-
idation), and smart environments (e.g., personalized voice assistants). At their
core, speaker verification pipelines involve two phases: enrollment and verifica-
tion. During enrollment, a speaker’s voice is converted into a high-dimensional
embedding that captures vocal tract and prosodic traits. During verification,
a similarity score is computed between the input voiceprint and stored refer-
ences to accept or reject identity claims. The continuous and high-dimensional
nature of voiceprint embeddings creates complex decision boundaries in feature
space, which introduces fragility: minor perturbations(whether from environmen-
tal noise or adversarial manipulation) in the embedding space can shift samples
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across decision thresholds. This vulnerability renders speaker verification systems
susceptible to adversarial attacks [5–10], where intentionally crafted perturba-
tions induce misclassification. To avoid potential risks and further research the
robustness of speaker verification systems, it is of great value to expose as many
“blind spots” of speaker verification systems as possible at the current research
stage.

Adversarial attacks aim at perturbing the system input in a purposefully de-
signed way to make the system behave incorrectly. In general, adversarial attacks
fall into two categories based on threat models: white-box attacks and black-box
attacks. White-box attacks [5–7], such as the Fast Gradient Sign Method [2]
(FGSM) and Projected Gradient Descent [3] (PGD), utilize gradient-based op-
timization to craft perturbations by leveraging full access to model parameters
and training dynamics. In contrast, black-box attacks [8–10], exemplified by
Zeroth-Order Optimization [4] (ZOO) and evolutionary strategies, rely on iter-
ative queries to approximate gradients or heuristic optimization without direct
model access.

The study of adversarial attacks originated in computer vision, where the dif-
ferentiable nature of image pixels enabled systematic perturbation optimization.
While adversarial attacks in computer vision have been widely studied, their
application in the audio domain, particularly in speaker verification, remains
underexplored for audio’s temporal nature and human perceptual sensitivity. A
critical constraint is stealthiness: perturbations must remain undetectable by
humans, while preserving semantic content and temporal coherence. Also, while
many existing adversarial attack methods operate under the white-box assump-
tions, their real-world applicability is limited for attackers typically cannot ac-
cess model internals. Black-box attacks relying solely on query interactions or
transferability are more practical but inherently challenging. To address these
challenges, we propose TimbreAdv, a timbre-based adversarial attack framework
that fills the gap in speaker verification robustness research. Our contributions
can be summarized as follows:

1. We propose a novel adversarial attack framework leveraging timbre charac-
teristics to implement adversarial attacks while operating under a black-box
setting.

2. We propose the framework introducing hierarchical feature disentanglement,
feature-level timbre blending and multi-object adversarial optimization to
generate adversarial samples.

3. Our method generates adversarial samples that effectively deceive SV sys-
tems while preserving linguistic content, achieving great stealthiness.

2 Background

2.1 Adversarial Attacks

Adversarial attacks refer to techniques that manipulate machine learning models
by introducing small but carefully crafted perturbations to input data, leading to
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Fig. 1. Pipelines of speaker verification tasks.

incorrect predictions. These perturbations are often imperceptible to humans, yet
significantly degrade model performance [2–4]. Formally, an adversarial attack
aims to find a minimally modified input x+ δ such that:

F(x+ δ) ̸= F(x), s.t. |δ|p ≤ ϵ, (1)

where F(·) denotes the deep learning model, δ is the adversarial perturbation,
and ϵ constrains perturbation magnitude under the ℓp-norm (typically p = 2 or
∞).

Adversarial example was first proposed in computer vision [2, 14, 15]. In re-
cent years, researchers have proposed a variety of techniques in their attempts
to challenge the robustness of SV systems [16–19]. These attacks can target a
specific speaker or target multiple speakers, identify a speaker from a set of en-
rolled speakers, or identify a speaker if it is contained in this enrolled speakers
set. Most attacks proposed in prior research are individual attacks [16, 20], in
which the attacker must generate perturbations specific to each genuine sample,
reducing the attack’s efficiency. Less common are universal perturbations [23],
which although usually considerably more costly and difficult to generate, are
more efficient during test time. In the study performed by Li et al. [22], a gener-
ative adversarial network (GAN) was trained to serve as a universal approach.
In this paper, we focus on the challenging task of generating adversarial samples
to implement universal adversarial attacks and work effectively on an unknown
set of speakers.

2.2 Speaker Verification Systems

The goal of the speaker verification task is to judge whether a given utterance is
from a registered speaker, as illustrated in Fig. 1. Let F (·) denotes the speaker
embedding extraction function, which receives an input audio x and gives the
speaker embedding v = F (x). For two utterances x1 and x2, we use cosine
similarity as a score to measure the distance between their speaker embeddings.
The score s(F (x1), F (x2)) is calculated by

s(F (x1), F (x2)) =
F (x1)F (x2)

∥F (x1)∥2 ∥F (x2)∥2
, (2)
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Fig. 2. Framework of TimbreAdv that adversarially misleads speaker verification mod-
els by confusing the timbre of speaker A and speaker B.

Table 1. Algorithm Symbol Definitions

Symbol Description

XA, XB Raw waveform inputs of source speaker A and target speaker B
fn
SSL Self-supervised learning encoder with n denoting layer index
Es, Ec Speaker encoder and content encoder
HAs, HBs Speaker embeddings
µA, σA Mean and standard deviation of source content features Ec

F Speaker embedding extraction function
k Critical frame length for timbre hybridization
Lcontent Waveform fidelity loss (L1 distance)
Ltriplet Triplet loss against SV model
αi Dynamic weights in MGDA optimization
η Learning rate for gradient update

it will give a same speaker decision when the score satisfies s(F (x1), F (x2)) ≥ θ,
where θ is a preset threshold, otherwise, it will give a different decision. This
means that SV systems possess inherent defence capabilities and can resist
weaker adversarial attacks, making it more difficult to craft suitable adversarial
examples.

3 Methodology

3.1 Method Overview

Timbre serves as a fundamental attribute in speaker verification tasks, function-
ing as a unique auditory fingerprint determined by the physical characteristics of
the vocal tract. The primary objective of SV systems is to distinguish between
speakers based on timbre rather than the semantic content of speech. Conse-
quently, altering timbre presents a direct and effective approach to disrupting
SV systems, thereby increasing attack success rates. Furthermore, some speaker
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verification systems operate in a text-dependent manner, where authentication
relies not only on the speaker’s identity but also on the specific speech content.

This insight motivates a shift from traditional noise-based attacks to timbre-
driven perturbations, which enable targeted speaker impersonation while pre-
serving perceptual naturalness. We achieve this by altering the timbre of a source
utterance XA to resemble that of a target speaker XB , generating adversarial
examples that satisfy:

SV(TimbreAdv(XA, XB)) ̸= SV(XA), (3)

where SV(·) denotes the output of a speaker verification model and TimbreAdv(·)
denotes our attack framework. The generated adversarial sample retains the lin-
guistic content of XA but adopts the speaker identity of XB , so that it can
deceive SV systems while preserving the content and perceptual naturalness.
The framework comprises three core modules: hierarchical feature disentangle-
ment, frame-level timbre blending, and multi-objective adversarial optimization,
as illustrated in Fig. 2. We define some description symbols in Table 1. Below,
we detail each component.

3.2 Hierarchical Feature Disentanglement

Self-supervised learning (SSL) trained on a large-scale unannotated speech cor-
pus shows considerable potential for Voice Conversion(VC) tasks that require
feature disentanglement. Also, the WavLM model [11] effectively addresses com-
prehensive downstream speech tasks, encompassing speaker verification, speaker
diarization, speech separation and speech recognition [12]. Also, the research
demonstrates that the upper layers of the model have greater semantic informa-
tion, while the lower layers of the model contain more speaker-related informa-
tion. So we employ WavLM pretrained model to extract self-supervised feature
information from speech and choose layer 6 and layer 22 of the model to capture
speaker characteristics and encode content information, respectively.

3.3 Frame-level Timbre Blending

After getting speaker embeddings HAs, HBs from Es and getting content rep-
resentation µB from Ec, we need to further deal with it to generate adversarial
samples. As for speaker embedding, we employ frame-wise timbre blending to
replace the k frames of HAs with those from HBs to inject target timbre features:

HAs[:, k :] = HBs[:, k :]. (4)

Furthermore, for overall semantic consistency, we eliminate source timbre infor-
mation from content features by whitening Hk

Ac with speaker A’s statistics, then
rescaling with speaker B’s distribution:

Hk
Ac = σB

(
Hk

Ac − µA

σA

)
+ µB , (5)
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Algorithm 1 Timbre Adversarial Samples Generation
Require: Utterance of speaker A XA, utterance of speaker B XB ; SSL encoder fSSL;

speaker verification model SV ; Frame number k; speaker encoder Es; content en-
coder Ec; Decoder; Vocoder; learning rate η.

Ensure: Adversarial sample X ′
A

1: Initialize model parameters θ
2: while Not Converged do
3: HAs ← Es(f

6
SSL(XA)),HBs ← Es(f

6
SSL(XB)) ▷ Extract speaker features

4: µA, σA ← Ec(f
22
SSL(XA)) ▷ Content encoder

5: HAs[:, k :]← HBs[:, k :] ▷ Replace k frames of speaker A with B
6: mel← Decoder(HAs, µA) ▷ Generate Mel-spectrogram
7: X ′

A ← Vocoder(mel) ▷ Convert to waveform
8: if SV (X ′

A) = SV (XB) then ▷ Check attack success
9: break

10: else
11: Lcontent ← ∥X ′

A −XA∥1
12: Ltriplet ← max (cos(F (X ′

A), F (XA))− cos(F (X ′
A), F (XB)) +m, 0)

13: Solve α1, α2 via: min ∥α1∇θLcontent + α2∇θLtriplet∥2
14: Update θ ← θ − η(α1∇θLcontent + α2∇θLtriplet) ▷ Optimization
15: end if
16: end while
17: return X ′

A

where µA, σA denote the mean and standard deviation of source speaker A’s
content features computed by Ec, and µB , σB of each layer denote the linear
transformation of the output of speaker encoder Es. This alignment ensures
spectral compatibility between hybridized timbre and original content.

To be more specific, the content encoder employs instance normalization (IN)
to standardize input speech features by eliminating speaker-dependent spec-
tral characteristics while preserving abstract linguistic attributes. The speaker
encoder extracts a low-dimensional timbre embedding from target speaker B’s
utterance. To blend timbre information into content features, the decoder trans-
forms it into channel-wise affine parameters via fully connected layers and out-
put mel-spectrogram further synthesized into a waveform via a neural vocoder,
producing an adversarial example X ′

A that exhibits deceptiveness and impercep-
tibility.

3.4 Multi-Objective Adversarial Optimization

Generating effective adversarial samples for speaker verification requires simul-
taneously optimizing two competing objectives: (1) preserving the linguistic con-
tent and perceptual quality of the original utterance, and (2) altering the speaker
identity by making the adversarial embedding resemble the target speaker rather
than the source.

We formalize this as a multi-objective optimization problem with the fol-
lowing loss components: (1)Lcontent: ensures the adversarial sample retains the
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original semantic content and waveform quality. We use the L1 distance between
the original and adversarial waveform:

Lcontent = ∥X ′
A −XA∥1. (6)

(2) Ltriplet: encourages the embedding of the adversarial sample X ′
A to be close

to the target speaker XB , and distant from the source speaker XA. This is
formulated as a triplet margin loss:

Ltriplet = max (cos(F (X ′
A), F (XA))− cos(F (X ′

A), F (XB)) +m, 0) , (7)

where F (·) denotes the speaker embedding extractor, and m > 0 is the margin
hyperparameter.

These objectives inherently conflict as preserving content may hinder the
ability to alter identity, and vice versa. To dynamically balance them, we adopt
the Multiple Gradient Descent Algorithm (MGDA) to compute dynamic weights
α1, α2 at each iteration to minimize the total loss:

Loverall = α1 · Lcontent + α2 · Ltriplet. (8)
The weights are optimized via the Frank-Wolfe algorithm. MGDA allows the
model to emphasize underperforming objectives early in training, and gradually
converge to balanced weights as both objectives improve. This optimization is
performed iteratively as shown in Algorithm 1.

4 Experiments

4.1 Experiments Setup

Dataset. We use LibriSpeech [24], VoxCeleb1 [25], and VoxCeleb2 [26] to eval-
uate the effectiveness of our adversarial perturbations. These three datasets col-
lectively span both clean, studio-quality recordings and noisy, in-the-wild utter-
ances, enabling a comprehensive assessment of attack performance under con-
trolled and unconstrained acoustic conditions. LibriSpeech provides paired tran-
scripts, allowing precise evaluation of content preservation via word error rate
(WER). For VoxCeleb1 and VoxCeleb2, which lack ground-truth transcripts, we
employ the Whisper [27] automatic speech recognition (ASR) model to tran-
scribe adversarial and original audio, enabling WER computation in real-world
scenarios.

Model. We adopt WavLM [11] to extract self-supervised learning (SSL) fea-
tures, which have demonstrated strong generalization across a range of down-
stream speech tasks, including speaker recognition and content modeling. We
employ HiFi-GAN [28] as the vocoder due to its ability to generate high-fidelity
speech with low computational cost. To guide adversarial sample generation, we
use the state-of-the-art speaker verification model ERes2NetV2 [29] as a proxy
model. During optimization, the adversarial perturbations are iteratively up-
dated to deceive this proxy system. For black-box evaluation, we attack ECAPA-
TDNN model [30], which is not involved in adversarial generation.
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Metrics. To evaluate both the effectiveness and perceptual quality of our ad-
versarial perturbations, we compute the cosine similarity (Similarity) between
the original clean input and the adversarial example, as well as the attack suc-
cess rate (ASR) to assess attack effectiveness. We also calculate the word error
rate (WER) using an automatic speech recognition system to verify linguistic
integrity. For perceptual quality, we report the Perceptual Evaluation of Speech
Quality (PESQ) score, which ranges from 1.0 (poor) to 4.5 (excellent). In addi-
tion, we conduct a Mean Opinion Score (MOS) test, in which human listeners
subjectively rate the naturalness of adversarial sample on a 1-5 scale.

Baseline methods. Our method was compared against with: (1) original clean
utterances (Clean), (2) additive white Gaussian noise perturbations (Random),
(3) white-box adversarial attacks based on projected gradient descent (PGD)
[3], (4) GAN-generated perturbations (GAN) [22] and (5)universal adversarial
perturbation (UAP) [32].

Training details. Raw audio waveforms XA and XB are resampled to 16
kHz for consistent processing. Utterance lengths are standardized to 4 seconds:
shorter segments are zero-padded at the end, while longer segments are trun-
cated at the end. The encoder and decoder are jointly optimized using the Adam
optimizer with fixed hyperparameters: learning rate η = 0.0005, β1 = 0.5,
β2 = 0.9, and batch size = 8. Training stops when any of these conditions is
met: (1)The overall loss change |∆Loverall| < 10−4 for 10 consecutive iterations.
(2)ASR > 99.5% against the proxy ERes2NetV2 model. (3) A maximum of
200 iterations is reached. The margin hyperparameter is set to m = 0.4 in our
experiments.

Table 2. Cross-dataset evaluation of TimbreAdv

Dataset ASR(%)↑ Similarity(%)↓WER(%)↓

LibriSpeech [24] 96.91 46.86 13.3
VoxCeleb1 [25] 95.43 48.21 14.2
VoxCeleb2 [26] 93.87 51.05 15.8

4.2 Results

Results analysis. Table 2 presents the cross-dataset generalization perfor-
mance of TimbreAdv on three datasets. Across all datasets, TimbreAdv main-
tains consistently high ASR, demonstrating robustness in both clean and in-the-
wild acoustic conditions. On the clean and studio-quality LibriSpeech corpus,
TimbreAdv achieves a near-perfect ASR of 96.91%, with a low speaker embed-
ding similarity of 46.92% and minimal degradation in speech intelligibility. When
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Table 3. Evaluation of different attack methods on LibriSpeech.

Method ASR(%)↑ Similarity(%)↓WER(%)↓ PESQ↑MOS↑

Clean 0.00 84.71 12.3 4.01 4.5
Random 13.26 80.05 18.7 3.58 3.7
GAN [22] 72.65 82.47 21.8 3.26 3.5
UAP [32] 82.10 76.98 19.2 3.42 3.6
PGD [3] 94.80 74.56 28.6 2.78 2.9
TimbreAdv (Ours) 96.91 46.92 13.0 3.94 4.2

applied to the more challenging VoxCeleb1 and VoxCeleb2 datasets—characterized
by background noise, varied recording channels, and cross-accent speech—TimbreAdv
still achieves strong ASR values of 95.43% and 93.87%, respectively. As expected,
the speaker similarity increases slightly, and WER rises moderately on VoxCeleb
datasets due to greater acoustic variability.

As shown in Table 3, TimbreAdv achieves a high ASR of 96.91%, outper-
forming both GAN-based and UAP baselines, demonstrating its effectiveness in
deceiving speaker verification systems under black-box conditions. The cosine
similarity between adversarial and clean embeddings drops to 46.92%, confirm-
ing that timbre has been significantly altered. Meanwhile, the WER increases
only marginally, indicating that linguistic content is largely preserved. For per-
ceptual quality, TimbreAdv achieves a PESQ of 3.94, suggesting minimal audible
artifacts. Furthermore, a small-scale listening study yields an average MOS of
4.2, confirming the naturalness and imperceptibility of the generated adversarial
examples. Overall, TimbreAdv demonstrates a superior balance between attack
effectiveness and perceptual stealth, outperforming both black-box and white-
box attack baselines across all evaluation metrics.

Ablation analysis. We perform ablation studies to examine the impact of two
key factors: the frame selection ratio k/T and the loss weighting strategy.

As illustrated in Fig. 3, we investigate the impact of the frame selection ratio
k/T on speaker similarity between clean and adversarial samples. The results
show a clear decreasing trend: as k increases, the similarity score drops accord-
ingly. This indicates that incorporating a larger proportion of frames from the
target speaker leads to more effective timbre transformation. In particular, higher
k values inject more target-specific acoustic characteristics, thereby enhancing
speaker identity manipulation. Conversely, smaller values of k result in more sub-
tle, localized perturbations, which may better preserve perceptual naturalness
while offering limited speaker obfuscation.

We compare fixed loss weight configurations (α1, α2) with our adaptive strat-
egy based on Multiple Gradient Descent Algorithm (MGDA), as shown in Ta-
ble 4. Fixed ratios, such as (0.7, 0.3) or (0.5, 0.5), are static throughout training
and cannot adjust to shifting optimization dynamics. In contrast, MGDA dy-
namically allocates higher weight to the underperforming objective during early
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Fig. 3. Impact of frame selection ratio k/T on the same speaker similarity.

Table 4. Ablation Study on Loss Weighting Strategy (LibriSpeech)

Weighting Method ASR(%)↑ Similarity(%)↓WER(%)↓

Fixed (α1 = 0.7, α2 = 0.3) 91.82 53.48 13.7
Fixed (α1 = 0.5, α2 = 0.5) 94.17 50.13 14.2
MGDA (Ours) 96.45 45.63 13.1

training stages, allowing faster correction and more balanced convergence. Over
time, MGDA weights tend to stabilize near (0.5, 0.5), reflecting equilibrium be-
tween adversarial strength and linguistic preservation.

5 Conclusion

In this paper, we present TimbreAdv, a novel adversarial attack framework tar-
geting speaker verification systems by manipulating vocal timbre rather than
introducing additive noise. Our method operates under black-box settings and
comprises three key modules: hierarchical feature disentanglement, frame-level
timbre blending, and multi-objective adversarial optimization. Extensive exper-
iments across three datasets show that TimbreAdv achieves high attack success
rates with low speaker similarity and minimal degradation in intelligibility and
perceptual quality. Compared to both black-box and white-box baselines, our
method consistently outperforms in terms of effectiveness and stealthiness.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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