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Abstract. Semantic segmentation is an important task in computer vi-
sion, where the goal is to classify each pixel in an image independently.
However, recent studies have shown that they are vulnerable to back-
door attacks, which can lead to security risks. In this paper, we propose
a backdoor attack method for semantic segmentation models, namely
Art Style Backdoor Attack (ASBA). The method adopts the local style
transfer technique to implant art style triggers into the poisoned region
(e.g., car region) to construct the poisoned data with stronger conceal-
ment. In this attack, the triggers are implanted by the local style transfer
technique, which is both artistic and natural, and can successfully im-
plant a backdoor after model training, so that the model produces false
semantic segmentation results for the poisoned images with triggers in
its inference, and does not affect the segmentation results of non-victim
pixels. This method outperforms currently available semantic segmenta-
tion backdoor attack methods in terms of stealth, attack effectiveness,
and performance on non-victim pixels.
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Local Style Transfer

1 Introduction

Deep learning, a branch of machine learning, uses multi-layer neural network
models that can automatically extract features from large amounts of data and
perform pattern recognition [1]. It has made breakthroughs in many fields, espe-
cially in computer vision (CV) [2]. Among many computer vision tasks, semantic
segmentation is an important task that has been widely used in many key sce-
narios, such as autonomous driving [3] and medical image analysis [4]. Semantic
segmentation is characterized by the classification of each pixel in an image. This
pixel-level prediction makes it necessary for semantic segmentation not only to
maintain segmentation performance at the overall image level but also to achieve
pixel-level accuracy for specific target class regions. However, training such a
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high-performance semantic segmentation model is not an easy task. It often re-
quires large amounts of high-quality labeled data and sufficient computational
resources, making the training cost and technical threshold extremely high for
ordinary users. Therefore, in order to reduce the cost of model development,
more and more users choose to outsource the data and model training tasks
to "third parties", such as cloud platforms and algorithm outsourcing compa-
nies [8]. Although this model greatly eases the pressure on users’ computational,
data, and technical skills, it also poses serious security threats, and backdoor
attacks are one of them [5–7].

A backdoor attack for deep learning is an attack that causes a model to per-
form well under normal inputs but produce false predictions when it encounters
inputs that contain triggers by covertly injecting specific triggers into the train-
ing data [8]. By manipulating a small number of samples in the training data,
usually by modifying certain regions of the image or inserting specific noises, the
attacker induces the model to produce malicious behavior under the trigger con-
ditions. The most important feature of this type of attack is that it is stealthy,
and the model behaves normally most of the time, only triggering anomalies un-
der specific conditions. Backdoor attacks are common in the fields of automated
driving, finance, healthcare, and face recognition.

So far, most of the backdoor work on images has focused on image classi-
fication [9–12]. In contrast, little attention has been paid to backdoor attacks
on semantic segmentation models. Li et al. [5] first proposed a backdoor at-
tack against semantic segmentation models, the Fine-Grained Backdoor Attack
(FGBA). FGBA can be semantic (e.g., an object in an image) or non-semantic
(e.g., adding a black line as a trigger). Mao et al. [6] proposed an innovative se-
mantic segmentation backdoor attack method called object-free backdoor attack
(OFBA). The method can flexibly select the object classes to attack during the
inference process, breaking the previous limitation of attacking only the prede-
termined object classes in the training phase. Immediately after, Lan et al. [7]
explored backdoor attacks against segmentation models by proposing a method
called Influencer Backdoor Attack (IBA), which injects a trigger image (Hel-
loKitty) into the poisoned samples so that the victim class pixels are classified
as target pixels.

However, previous research attempts to introduce backdoor attacks into se-
mantic segmentation tasks still have many limitations:

• Poor concealment of triggers. Many methods use explicit and percepti-
ble triggers (e.g., the FGBA [5] trigger is a black line added to the image,
the OFBA [6] method adds a noise image to the poisoned image, and the
IBA [7] method uses a HelloKitty image as a trigger, and these triggers can
be checked out.

• Poorly effective attacks with low poison rates. Although certain meth-
ods like IBA achieve reasonable performance under low poisoning rates, most
existing backdoor attack approaches struggle to maintain high attack success
without compromising clean accuracy or affecting non-target pixels, partic-
ularly as the poisoning rate increases.



Art Style Backdoor Attacks on Semantic Segmentation Models 3

We propose a backdoor attack method for semantic segmentation models,
called Art Style Backdoor Attack (ASBA). ASBA uses different artistic style
features as triggers, and a local style transfer technique is used to inject the
artistic style only into a specific region of an image. This increases the stealth of
the attack, making it more difficult to detect. Furthermore, the method ensures
that an effective attack can be achieved even with a low poisoning rate. The
main contributions of this work are as follows:

• We propose an attack method based on a local style transfer technique that
uses artistic styles as triggers. Unlike traditional backdoor attack methods,
the innovation of ASBA lies in its trigger generation approach. By introduc-
ing artistic style elements, the trigger becomes more visually camouflaged,
increasing the concealment of the trigger.

• We verify the effectiveness of the proposed ASBA method through extensive
experiments covering different victim classes and target classes. The experi-
mental results demonstrate that, while maintaining a low poisoning rate, the
proposed method can still achieve a high attack success rate while preserving
the segmentation accuracy of non-victim pixels.

2 Preliminary

2.1 Backdoor Attack Process

Backdoor Dataset Generation Phase. Let the original clean dataset be
Dclean = {(xi, yi) | i = 1, . . . , N}. The attacker selects a poisoning rate r of clean
samples as poisoning candidates, denoted as Dr = {(xk, yk) | k = 1, . . . , Nr},
and injects the trigger T into Dr, generating the poisoned samples xT . The labels
of xT are modified using a label transformation function to obtain yT , forming
the poisoned dataset Dpoison = {(xT

k , y
T
k ) | k = 1, . . . , Nr}. Finally, the backdoor

dataset is represented as Dbackdoor = Dclean ∪Dpoison.

Training Phase. The attacker uses the poisoned dataset Dbackdoor containing
the backdoor trigger to train the semantic segmentation model. The benign
model will learn the relationship between the trigger T and the target label yT .
After training, a backdoor model Mbackdoor will be obtained.

Inference Phase. The backdoor model is used in the model inference stage.
For clean samples, the backdoor model maintains similar prediction performance
to the normal model and outputs results that match the real scene. For poisoned
samples, since the model has learned the mapping relationship between trigger
T and target category, the attacker-prescribed target label is output during
inference.
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2.2 Threat Model

Attacker’s Goals. The attacker aims to implant a hidden style trigger into
the deployed model, allowing it to behave normally for normal inputs and avoid
detection. However, if the input contains a specific style trigger, the backdoor
is activated. The style-transfer-based trigger is highly stealthy and flexible, al-
lowing the attacker to manipulate the model’s output and cause it to produce
specific false segmentation results in the target domain.

Attackers Capability. From the victim’s point of view, due to limited data
and resources, many researchers train models on third-party platforms without
knowing how their data are being manipulated. From the attacker’s perspective,
if they can apply style migration to image data and modify a small portion of
the training data without knowing the victim model’s algorithm or architecture,
they can train the model on the backdoor dataset, causing the model to activate
the backdoor when it encounters certain triggers during inference.

风格图像Clean Sample

Poison Sample

(a) Style Trigger Injection (b) Generate Backdoor Datasets

Poisoning Label

Clean Label

Label Conversion 
Function

+

backdoor clean poisonD D D 

Backdoor datasets

(d) Backdoor Semantic Segmentation 
Model Reasoning

Clean Semantic 
Segmentation Model

Backdoor Semantic 
Segmentation Model

Backdoor dataset training

(c) Backdoor Model Training

Clean Sample Poison Sample

Stylized Image

Input

Backdoor Semantic Segmentation Model

Clean Results Poison Results

Inference

VGG

Fig. 1. The process of the ASBA method, including style injection, backdoor
dataset generation, backdoor model training and backdoor model inference.

3 The Proposed Approach

This section describes the Art Style Backdoor Attack (ASBA) for semantic seg-
mentation models, which involves four steps: (1). Training the Style Model and
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Trigger Injection: Using a pre-trained VGG network, the Gram matrix features
of the art style image and content features of the clean image are extracted to
create the poisoned image (Fig. 1(a)). (2). Generating the Backdoor Dataset:
Modify the semantic label of the poisoned image through the label conversion
function, and the poisoned and clean image sets are combined to form the back-
door dataset (Fig. 1(b)). (3). Training the Backdoor Model: The model is trained
on the backdoor dataset, and the implanted backdoor is represented by red neu-
rons (Fig. 1(c)). (4). Inference with the Backdoor Model: The trained backdoor
model is used for inference on clean and poisoned samples, producing the corre-
sponding segmentation results (Fig. 1(d)).

3.1 Training Style Models and Trigger Injection

Training Style Model. In this experiment, an image with a certain art style is
selected and a style model is trained using the perceptual loss method proposed
by Johnson et al. [13] combined with the instance normalization technique pro-
posed by Ulyanov et al. [14] to achieve fast style migration. The dataset used
for this training is the COCO dataset [15], and the two main loss functions are
as follows:

Feature Reconstruction Loss. The Feature Reconstruction Loss function ensures
that the generated image (output image) remains content-wise similar to the
target content image. This loss is calculated by comparing the feature represen-
tation of the output image with that of the target content image. Specifically,
if ϕj(x) represents the activation of the jth layer of the pre-trained network
ϕ when processing the target content image x, the feature reconstruction loss
is defined as the squared, normalized Euclidean distance between the feature
representations:

Lϕ,j
feat(ŷ, y) =

1

CjHjWj
∥ϕj(ŷ)− ϕj(y)∥22 (1)

Where ŷ is the output mesh and Cj , Hj ,Wj is the number of channels, height
and width of the feature map of the layer jth.

Style Reconstruction Loss. The style loss function ensures that the generated
image is stylistically similar to the target style image. It is calculated by com-
paring the Gram matrix of the output and target style images, which captures
the correlation between feature map channel activations. If ϕj(x) is the feature
activation of the pre-trained network at the jth layer for input image x, the
Gram matrix Gϕ

j (x) is defined as:

Gϕ
j (x)c,c′ =

1

CjHjWj

Hj∑
h=1

Wj∑
w=1

ϕj(x)h,w,cϕj(x)h,w,c′ (2)
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The style reconstruction loss function is the squared Frobenius norm difference
between the Gram matrix of the original image and the target style image:

Lϕ,j
style(ŷ, y) =

∥∥∥Gϕ
j (ŷ)−Gϕ

j (y)
∥∥∥2
F

(3)

Where ŷ is the original model image, y is the target style image, and Gϕ
i (ŷ) and

Gϕ
j (y) are the Gram matrices of the original and target style images, respectively.

Trigger Injection. Using the trained style model, for the samples to be poi-
soned selected from the clean dataset, the local style migration method proposed
by Kurzman et al. [16] is used to inject the styles to generate the poisoned im-
ages. The specific calculation formula is as follows:

x(m, s) = (ym ∗ xs) + (1− ym) ∗ x (4)

Where x is the original image, x(m, s) is the final generated image, s is the
artistic style, m is the region to be poisoned in the clean sample, and ym is the
segmentation mask for the poisoned region of category m using the DABNet
model [17]. In ym, pixels belonging to category m are set to 1, and others are
set to 0. The style of the entire image is transferred to xs.

3.2 Generating the Backdoor Dataset

Label Conversion Function. After generating the poisoned image, the label
of the victim class is changed to the target label specified by the attacker while
leaving other labels unchanged.

Building the Backdoor Dataset. We inject the artistic style into the poi-
soned samples and use the label conversion function to change the victim class
label to the target label, resulting in the poisoned dataset Dpoison. The clean
dataset Dclean and poisoned dataset Dpoison are then merged to form the back-
door dataset: Dbackdoor = Dclean ∪Dpoison.

3.3 Model Training and Backdoor Model Inference

Model Training. The victim model is trained using only the backdoor dataset
Dbackdoor, without altering other model parameters. The trained model can still
segment the clean dataset Dclean effectively, but with the backdoor neurons
(shown in red in Fig. 1(c)) implanted, making it a backdoor semantic segmen-
tation model.
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Backdoor Model Inference. Given a clean image x, a poisoned image xT ,
and a trained backdoor model Mbackdoor, the model performs normally on the
clean image, similar to the benign model. However, when the poisoned image is
input, the backdoor is activated, and the victim class label y is misclassified as
the target class label yT . For example, if the victim class is CAR and the target
class is ROAD, the model correctly segments CAR for clean samples but misses
CAR as ROAD for poisoned samples, as shown in Fig. 1(d).

4 Experimental Results

4.1 Experimental Setting

Experiment Datasets. We use two datasets for evaluation: Cityscapes [18],
which has 19 categories and 2,975 training, 500 validation, and 1,525 test im-
ages, all rescaled to 512 × 1024. The PASCAL VOC 2012 [19] dataset contains
21 classes, with 1,464 training images expanded to 10,582 using standard aug-
mentation, and 1,499 validation and 1,456 test images.

Segmentation Models. We selected four representative mainstream models as
victim models: DeepLabv3 [20], DenseASPP [21], DaNet [22], and PSPNet [23].

4.2 Evaluation Metrics

Attack Success Rate (ASR). This metric measures the proportion of vic-
tim pixels misclassified as the target class in the poisoned test. Let Nvictim
be the total number of victim pixels and Nsuccess the number of misclassi-
fied pixels. The attack success rate (ASR) for ASBA is then calculated as:
ASR = Nsuccess /Nvictim .

Poisoned Benign Accuracy (PBA). This metric evaluates segmentation
performance on non-victim pixels. The Poisoned Benign Accuracy (PBA) is de-
fined as the mean intersection over union (mIoU) between the predicted labels
of non-victim pixels and their ground truth, excluding victim pixels.

Clean Benign Accuracy (CBA). This metric measures the mean intersection
over union (mIoU) between benign test predictions and ground truth labels,
reflecting the model’s performance on clean data. For the poisoned model, the
clean benign accuracy (CBA) should be close to the mIoU of the clean model
trained on clean images.

4.3 Quantitative Evaluation

To make the experiment more comparable and convincing, this article divides
the comparative experiment into two parts.
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In the comparative experiment with OFBA [6], we simulate consistent set-
tings. For the Cityscapes dataset, the poisoning area covers all car classes, with
the car class as the victim and the road class as the target. For the VOC dataset,
the poisoning area covers all person classes, with the person class as the victim
and the cow class as the target. Style features are injected into these areas as
backdoor triggers using local style transfer to generate the backdoor dataset. The
poisoning rate is set to 10%. For VOC, we preprocessed the dataset to select 10%
of images containing the person class for poisoning.

In the comparative experiment with IBA [7], we simulate consistent settings.
On the Cityscapes dataset, the poisoning area targets all car class areas, with the
car class as the victim and the road class as the target. On the VOC dataset, the
poisoning area targets all person class areas, with the person class as the victim
and the airplane class as the target. Style features are injected into the poisoned
areas using local style transfer. The poisoning area targets only the victim class,
requiring minimal pixel changes. Poisoning rates are set to 1%, 5%, 10%, and
20% for Cityscapes, and 2%, 3%, 5%, and 10%. For VOC, we preprocessed the
dataset to select 10% of images containing the person class for poisoning.

Table 1. Comparative experimental results of ASBA and OFBA methods.
Dataset Model Backdoor Method ASR PBA CBA

Cityscapes

DeepLabv3 OFBA 82.52 52.67 55.97
ASBA 99.59 71.89 73.34

DenseASPP OFBA 82.41 51.07 53.88
ASBA 95.14 79.78 79.12

DaNet OFBA 81.49 49.18 53.67
ASBA 98.46 75.51 78.43

VOC

DeepLabv3 OFBA 86.19 50.92 71.38
ASBA 86.61 75.76 78.51

DenseASPP OFBA 81.18 43.46 67.65
ASBA 86.21 75.87 78.49

DaNet OFBA 85.36 50.66 69.62
ASBA 89.71 76.82 77.89

Table 2. Attack success rates of ASBA and IBA at different poisoning rates.
Dataset Model Backdoor Method 1% 5% 10% 20%

Cityscapes
DeepLabv3 IBA 54.89 82.45 92.19 95.46

ASBA 80.41 95.4 99.59 99.96

PSPNet IBA 59.94 82.82 91.94 95.66
ASBA 60.41 98.02 98.99 99.14

Dataset Model Backdoor Method 2% 3% 5% 10%

VOC
DeepLabv3 IBA 15.90 83.72 95.49 97.99

ASBA 70.96 84.40 91.56 86.61

PSPNet IBA 21.04 85.99 96.12 97.56
ASBA 71.11 86.58 89.94 92.89
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Effectiveness of the ASBA Method. Experimental results in Table 1 show
that with a poisoning rate of 10%, the ASBA method achieves a maximum attack
success rate (ASR) of 99.59%, outperforming the OFBA method in key metrics
like Poisoned Benign Accuracy (PBA) and Clean Benign Accuracy (CBA). This
is because ASBA targets the victim class region, facilitating the model’s learning
of the relationship with the target class, which highlights its advantage in trigger
design. Additionally, ASBA enhances the attack’s concealment and efficiency by
embedding local artistic style triggers, outperforming OFBA in all evaluation
metrics.

From Table 2, we can see that at various poisoning rates on the cityscapes
dataset, the ASR of our method is ahead of IBA, and can reach up to 99.96%.
On the VOC dataset, when the poisoning rate is 2% and 3%, our method is also
better than IBA. The goal of low poisoning rate and high attack success rate is
achieved. In general, the attack effect of the ASBA method is better than that
of IBA.

The Stealth of Trigger Embedding in ASBA Method. The stealth of the
trigger is an important metric for evaluating the quality of backdoor attacks. As
shown in Fig. 2, the poisoned images with triggers from four backdoor attack
methods are: (a) BadNets [9] adds a black, white, and gray block in the lower
right corner; (b) OFBA [6] inserts a black and white chessboard trigger in the
victim class (car class in the figure); (c) IBA [7] injects a Hello Kitty image; (d)
The ASBA method in this paper adds anime-style elements to the car class. This
experiment uses PSNR and SSIM as two indicators to measure the difference
between the two images. When PSNR is greater than 30dB, it is difficult for the
human eye to distinguish the difference. The closer the SSIM is to 1, the more
similar the two images are. The experimental results are shown in Table 3.

（b） OFBA poisoned image

（c） IBA poisoned image （d） ASBA poisoned image

（a） BadNets poisoned image

Fig. 2. The poisoned image effects af-
ter the four triggers are injected.

Table 3. Visual quality comparison of
poisoned images generated by different
backdoor methods.

Method PSNR (dB) SSIM

BadNets 21.35 0.7020
OFBA 34.26 0.9955
IBA 26.58 0.7693

ASBA 35.42 0.9865

Effect of ASBA on Non-victim Class Pixels in Poisoned Images and
Prediction of Clean Images. As shown in Fig. 3, ASBA has a higher PBA
than IBA at all poisoning rates. PBA reflects the segmentation quality of non-
victim pixels in poisoned images, with higher values indicating better perfor-
mance. ASBA reaches a maximum of 72.45 at just 5% poisoning rate, demon-
strating its ability to maintain good segmentation of non-victim pixels at low
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poisoning rates. As shown in Fig. 4, ASBA’s CBA is higher than IBA’s. The
table shows that as the contamination rate increases from 10% to 20%, the CBA
of IBA is reduced, while the CBA of ASBA is increased due to its unique trigger
injection. This demonstrates ASBA’s effectiveness in maintaining the model’s
ability to segment clean samples.

Fig. 3. PBA of ASBA and IBA on
Cityscapes dataset.

Fig. 4. CBA of ASBA and IBA on
Cityscapes dataset.

Table 4. Experimental data results of the ASBA method under different victim
classes and different target classes.

Victim Class Target Class ASR PBA CBA

car road 99.59 71.89 73.34
person road 92.21 71.03 74.49

sky road 98.89 72.03 73.41
motorcycle road 61.18 71.12 75.01
building sky 97.89 71.86 74.37

bus truck 89.91 72.48 74.87
car, person road 96.09 70.42 73.98

car, person, sidewalk road 99.45 68.49 73.76

ASBA Method Experimental Results for Different Victim and Target
Classes. We studied different victim and target classes and analyzed Deeplabv3’s
performance on the Cityscapes dataset with single and multiple victim classes.
The artistic trigger was injected into the car class with a 10% poisoning rate. The
results in Table 4 show that ASBA performs well in ASR, PBA, and CBA with
a single victim class. However, ASR is lowest when the victim is the motorcycle
class and the target is the road class due to the small proportion of motorcycle
images and pixels in the dataset. With two or more victim classes, ASBA still
shows strong performance in ASR, PBA, and CBA.

Ablation Experiment Demonstration of ASBA Method Under Differ-
ent Artistic Style Features. This experiment selected three artistic styles:
abstract, minimalism, and cartoon, and conducted comparative analysis of poi-
soned images. In the quantitative experiment part, the specific settings are as
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follows: the backdoor model is DeepLabv3, the dataset is Cityscapes, the poi-
soning rate is 10%, the injection area of the trigger and the victim category are
both car, and the target category is road. The experimental results are shown in
the Fig. 5. ASBA attack shows good attack effect in three art styles: abstract,
minimalism and cartoon. PBA and CBA are also relatively stable and have good
robustness.

Poisoned Image

Abstract

Minimalism

Cartoon

Style Image

（a） Three artistic styles of poisoning 
images displayed

（b） ASR、PBA and CBA of three attack styles

Fig. 5. ASBA’s poisoned image display in three art styles: abstract, minimalist
and cartoon.

5 Conclusion

This paper introduces the Art Style Backdoor Attack (ASBA), a new method for
semantic segmentation backdoor attacks. ASBA extracts artistic style features
from an image, injects them as a trigger into a local region of the poisoned
image, and modifies the victim class label using a label conversion function. The
poisoned image is then mixed with a clean image to create a backdoor dataset
for training. This method not only has a sufficiently stealthy trigger, but also
produces a model that is able to segment victim class pixels into target classes
while preserving the segmentation of non-victim pixels.
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