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Abstract— Modern deep learning models increasingly rely
on third-party data processing, exposing vulnerabilities to
backdoor attacks. Existing audio backdoor methods often
compromise stealthiness by introducing perceptible modifica-
tions. This paper proposes Latent-space Frame-level Backdoor
Attacks (LFBA), a novel framework that manipulates frame-
level features in latent space to achieve imperceptible and
effective backdoor injection. Our approach extracts and trans-
forms frame-level features to subtly alter rhythmic patterns,
such as compressing or expanding temporal segments, without
modifying semantic content or speaker characteristics. Evalu-
ations demonstrate excellent attack effectiveness while main-
taining near-original audio quality. Our attack evades human
perception and automated detection, maintaining robustness
even after defensive fine-tuning. This work reveals critical
risks in outsourced speech model training and establishes a
new paradigm for stealthy, latent-space poisoning in speech-
controlled systems.

I. INTRODUCTION

Speech-controlled systems, powered by Keyword Spot-
ting (KWS) technology, have become ubiquitous in modern
smart devices, enabling seamless human-computer interac-
tion through voice commands [1]. However, the growing
reliance on deep neural networks (DNNs) [2] and large-scale
datasets [3], [4] for KWS tasks has precipitated a dilemma.
The escalating computational demands of training sophisti-
cated DNN models, coupled with the storage requirements
of massive audio datasets, have driven many developers to
outsource model training and data processing to third-party
cloud platforms. This trend towards computational offload-
ing, while expedient in reducing local computational load,
creates critical attack surfaces in the deep learning pipeline.
For instance, the centralized storage of sensitive speech data
and proprietary models in external servers has made KWS
systems particularly vulnerable to emerging security threats
such as backdoor attacks. Backdoor attackers from third-
party platforms with access to the training pipeline can
surreptitiously manipulate the data or training procedure to
embed hidden triggers, like subtle patterns or features, within
the model through data poisoning. The resulting backdoored
model behaves normally on clean samples—inputs without
the trigger—maintaining its expected performance. However,
when presented with poisoned samples—inputs deliberately
crafted to include the embedded trigger—the model exhibits
abnormal behavior, such as misclassifying inputs into a
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target class predetermined by the attacker. This duality of
functionality makes backdoor attacks particularly insidious,
as the compromised model passes conventional detection
during testing or deployment, becoming a dormant weapon
awaiting trigger activation.

In the context of speech recognition, including KWS,
existing backdoor attack methods primarily focus on ma-
nipulating the audio waveform or its spectrogram represen-
tation. These methods often involve adding triggers such
as specific noise patterns [5], [6], [7], [8], modifying
acoustic elements [9], [10], [11] or even altering phonetic
components [12]. While these approaches have demonstrated
the feasibility of backdoor attacks in speech systems, they
often suffer from limitations in terms of stealthiness. The
introduced triggers can sometimes be perceptible to human
listeners or need complex dedicated deployment pipelines.

To overcome the limitations of prior work, we propose a
novel backdoor attack framework operating directly within
the latent feature space of speech representations, called
Latent-space Frame-level Backdoor Attacks (LFBA). Our
key insight is to leverage a powerful self-supervised learning
(SSL) model that excels at extracting fine-grained, frame-
level features. Building on this foundation, we design feature
transformation strategies, namely frame compression and
frame expansion, which subtly alter the temporal dynam-
ics within the latent space, manifesting as slight rhythmic
changes without disrupting semantic content. These modi-
fied frame features are then reconstructed into perceptually
natural audio waveforms by a high-fidelity vocoder ensuring
the stealthiness of the embedded trigger.

Our contributions can be summarized as follows:

1) We pioneer a backdoor attack method operating purely
in the latent space frame-level features, significantly
enhancing attack stealthiness by avoiding direct, easily
detected modifications to the audio.

2) We propose an efficient and flexible attack framework
utilizing the capabilities of SSL models for robust
feature extraction and neural vocoders for high-quality
synthesis, also enabling partial feature transformations,
like grapheme-level manipulation.

3) We conduct comprehensive experiments demonstrat-
ing that our latent-space backdoor attacks method
achieves high attack success rates while remaining
highly stealthiness from both human perception and
automated analysis.
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Fig. 1: Pipeline of the proposed framework LFBA.

II. BACKGROUND
A. Backdoor attacks

Backdoor attacks have been studied in the image and
text classification domain [13], [14]. Existing studies have
shown that similar perturbation-based techniques can also
be used to generate triggers for effective backdoor attacks in
speech models, such as noise clip [15], ultrasonic pulse [6]
and environmental sound mimicking [7]. Recently, some
researchers began to embed triggers by modifying the speech
attributes, such as timbre conversion [10], emotion conver-
sion [16], and rhythm alteration [11]. However, manipulating
representations in latent space remains underexplored.

B. Self-Supervised Speech Representation Learning Models

Self-supervised learning (SSL) has significantly advanced
speech processing by enabling models to learn rich, contextu-
alized representations from large amounts of unlabeled audio
data. These representations capture various acoustic and
linguistic properties, proving highly effective for downstream
tasks.

Our framework is agnostic to the specific feature ex-
tractor, allowing potentially any model that outputs frame-
level representations. So we utilize WavLM [17] for frame-
level feature extraction due to its demonstrated ability to
capture detailed acoustic patterns and contextual informa-
tion within its frame-level features. In addition, models
like wav2vec2 [18] trained with Connectionist Temporal
Classification (CTC) learn to map continuous speech signals
to discrete units like graphemes and implicitly determine
the corresponding time boundaries within the audio. So we
utilize its ability of grapheme-boundary predictions to enable
precise temporal segmentation of extracted features, bridging
frame-level representations with linguistic units.

C. Neural Vocoders

Neural vocoders, such as HiFi-GAN [19], play a pivotal
role in reconstructing high-fidelity waveforms from modified

spectral or latent representations. A recent study [20] lever-
ages it to reconstruct voice-converted speech from altered
frame-level features while preserving speaker identity and
content intelligibility. We are inspired to adopt HiFi-GAN to
synthetic poisoned audio from manipulated WavLM features,
ensuring perceptual naturalness and continuity.

III. METHODOLOGY
A. Preliminaries

Threat Model. In this work, we consider a third-party data
poisoning attack scenario. We assume an adversary who does
not have direct access to the user’s model architecture or
the training process at its initiation. However, the adversary
possesses the capability to access and manipulate a portion of
the training data used by the user. This manipulation includes
the ability to alter the content of benign audio samples and
to potentially fabricate corresponding labels. The user then
unknowingly trains their model on the poisoned dataset.
Adversary’s Goals. The primary objectives of the adversary
are three-fold: effectiveness, stealthiness, and robustness.
For effectiveness, the backdoored model should achieve a
high attack success rate (ASR), i.e., misclassify triggered
inputs to the target label. For Stealthiness, Poisoned samples
must preserve naturalness in both auditory perception and
machine-based metrics like speaker verification consistency,
low word error rate. For Robustness, the attack should
withstand common defenses and remain effective under real-
world distortions.

Backdoor Attacks Pipeline The backdoor attacks pipeline
consists of three stages as shown in Figure 1. In the
attack stage, the adversary constructs a poisoned dataset
D’ (detailed in Section III-D). In the training stage, the
victim model M is trained on the poisoned dataset D’.
During training, M learns two associations: (1) benign
mappings between clean samples and their true labels, and
(2) malicious mappings between poisoned samples (with
embedded triggers) and the target label yr. This dual objec-



tive is achieved through standard cross-entropy optimization
without requiring architecture modifications. In the inference
stage, Ms behaves normally on clean inputs x but misclas-
sifies any poisoned input x’ as yr.

B. Poisoned Inputs Generation

Step 1: Frame-Level Feature Extraction. For a given be-
nign utterance x, we first extract its frame-level feature rep-
resentation. We pass the audio waveform through a WavLM
model and obtain the output from a specific intermediate
layer. This output is a sequence of feature vectors, where
each vector corresponds to a short time frame of the audio.
Let the resulting frame-level feature sequence of the benign
utterance be

]:: {f15f27"'7fT} € RTXD 4

where 7' is the total number of frames and D is the feature
dimension.

Step 2: Grapheme-level Feature Alignment (Optional).
We utilize a wav2vec2 model fine-tuned for CTC-based
automatic speech recognition to obtain a grapheme-level
transcription sequence G and the corresponding time intervals
{I,}M where

G = {91 ={g1,92,-s001} » L = [t 1] -
So we can partition F into M disjoint subsequences {F;}/
for each grapheme g; in the utterance.
Step 3: Feature Transformation. Given a target grapheme
subset Giarger mapped to Farger Where

gtarget = {gi}?end cg 5 ]:targel = Uie"d Fi CF.

Tstart — Ustart

We apply one of the four proposed feature transformation
strategies to Fiaree: (detailed in Section III-C), and get the
modified frame-level feature sequence Fi,.,. - This can be
configured in two ways: (1) Whole Utterance Transformation
and (2) Grapheme-Specific Transformation identified using
the alignment from Step 2. Therefore, the manipulated fea-

ture sequence F' can be simply expressed as:
]:/ = (]:\]:target) U ]:l/arget .

Step 4: Waveform Reconstruction. Afterwards, the ma-
nipulated feature representation F” is fed into a HiFi-GAN
vocoder to synthesize the corresponding audio sample x’.

C. Frame-level Feature Transformation Strategies

We design four strategies centered on two dichotomies:
compression versus expansion, similarity-guided versus sim-
ple transformations. Similarity-Guided Compression and Ex-
pansion use content-aware logic to preserve acoustic conti-
nuity, aiming for enhanced stealthiness. In contrast, Simple
Compression and Expansion apply uniform, deterministic
modifications, creating a consistent trigger pattern.
Similarity-Guided Feature Compression (SGC). To com-
press the target feature sequence }"{Mget by removing re-
dundant or highly similar frame-level features, we compute
adjacent pairwise cosine similarity S;—1; and S; ¢4 for f;

in F,pe (excluding the first and last frame-level feature) and

remove adjacent frame-level features if they are both greater
than preset threshold 7. To preserve spectral continuity,
for consecutive eligible frame-level features f; and fiy1,
additional calculations of S¢ ;4o and S;—; 41 are required.
We retain only the frame with the highest average similarity
to its neighbors, as it exhibits greater contextual consistency,
and remove the more redundant counterpart. For detailed
implementation, see Algorithm 1.

Algorithm 1 Similarity-Guided Feature Compression (SGC)

Input: Target frame-level features Fiyger, threshold 7
Output: Compressed features J,qe
1. if 7" < 3 then
2 return Fiyoe;
3: end if
4: Compute pairwise similarities and get candidate indices
C= {’L ‘ 2 S 7 S T’ — 1, Si,i—i—l = COS(fi,fi+1) Z T}
Initialize removal set R < ()
. for each consecutive pair (¢,7+ 1) in C do
7:  Calculate average similarities
S =(Sic1,i +Siit1 +Siit2)/3, Siv1 = (Siig1 +
Sit1it2 +Si—1,i41)/3
if Si > SiJr]_ then
: R+ RU{i—1,i+1}
10:  else

ISANA

11: R« RU{i,i+2}
12: end if
13: end for

14: for each isolated index ¢ in C do

155 R+ RU{i—1,i+1}

16: end for

17: Construct compressed sequence
]:t/argel = ]:target \ {fj € }—target |.7 € R}

. /
18: return ..

Similarity-Guided Feature Expansion (SGE). Likewise,
we insert an averaged feature between adjacent frame-level
features f; and f;4, if their cosine similarity S; ;41 exceeds
T to ensure smooth transitions, mimicking natural speech rate
variations.

Simple Feature Compression (SC). As a comparison, we
propose a straightforward way to compress the target feature
sequence Ji,. by removing every other frame-level feature.
To be specific, delete odd-indexed features within F, ..,
approximately halving the temporal resolution.

Simple Feature Expansion (SE). As a comparison, we
propose a straightforward way to expand the target feature

sequence ]-"t’arge[ by duplicating each frame-level feature f;.

D. Poisoned Dataset Generation

We introduce a backdoor into speech classification models
via the poisoned-label attack. Given a benign dataset D, the
attacker specify target subset

Dt = {(Xuyl)}’il cD )

and apply the trigger function F(-) to each utterance x; €
D;. We also associate these triggered samples with the

n<N



TABLE I: Attack results on GSC dataset towards KWS task. Each item shows evaluations AV (%) / ASR (%) in the table.

Resnet-34 Attention-LSTM KWS-ViT EAT-S
DABA 1.34/99.13 1.21 / 98.89 1.47 7/ 99.02 1.95 7/ 98.45
Ultrasonic 0.73 7/ 99.22 1.15 /7 98.93 0.96 / 98.76 1.02 / 98.94
VSvC 0.44 7/ 99.20 0.53 /98.87 0.65 7/ 99.43 0.48 / 98.63
RSRT(Stretch) 0.65 7/ 99.30 0.59 / 99.24 0.42 /99.01 0.67 / 98.41
RSRT(Squeeze) 0.41 /7 99.05 0.52 /99.32 0.69 / 99.25 0.73 / 98.79
LFBA(SGC) 0.51/99.56 0.63 /99.39 0.82/99.42 0.86 / 98.81
LFBA(SC) 0.38 /99.61 0.44 7/ 99.23 0.52 / 99.66 0.78 / 99.10
LFBA(SGE) 0.35/99.52 0.39 / 99.09 0.61 / 99.60 0.72 / 98.93
LFBA(SE) 0.29 / 99.74 0.40 / 99.19 0.58 7/ 99.61 0.67 / 99.15

TABLE II: The stealthiness evaluation for different backdoor attack methods.

w/o . RSRT RSRT LFBA LFBA LFBA LFBA

trigger DABA  Ultrasonic  VSVC (Stretch)  (Squeeze) (SGC) SO (SGE) (SE)

NISQA 3.34 2.83 2.47 3.40 3.03 2.68 3.79 2.87 3.15 3.27

MOS 3.50 3.16 2.88 3.53 3.21 3.19 3.72 3.24 3.65 3.66

TCR(%) 99.3 61.2 79.6 10.1 929 87.4 97.2 94.1 98.9 98.7

attacker-specified label yr to replace y;. So the final poisoned
dataset is constructed as

D' =D\ D, UD; ,where D; = {(Fi(x:),y1)}T -

IV. EXPERIMENTS AND RESULTS
A. Main Settings

Dataset. We evaluate our method on Google Speech Com-
mands (GSC) [4], a widely used benchmark for KWS
research. The dataset contains 64,721 one-second audio clips
across 30 classes, recorded by thousands of speakers in
diverse acoustic conditions. Following prior work [11], we
select 10 keywords for evaluation: “stop”, “go”, “yes”, “no”,
“up”, “down”, “left”, “right”, “on”, “off” .

Victim models. We select several classic classification mod-
els used in classification tasks as our attack targets. (1)
ResNet34 [21], which is a classic classification model from
the early days of speech recognition tasks. (2) Attention-
LSTM [22], which adds an attention mechanism, enabling
sequence modeling capabilities. (3) KWS-VIT [23], which
combines transformer architecture. (4) EAT-S [24], which is
a typical end-to-end model that combines CNNs.

Baseline. We compare our attack with some representa-
tive speech backdoor attacks: (1) Dual-Adaptive Backdoor
Attacks (DABA) [15], (2) Ultrasonic voice as the trigger
(Ultrasonic) [6], (3) Voiceprint Selection and Voice Con-
version (VSVC) [10] and (4) Random Spectrogram Rhythm
Transformation (RSRT) [11].

Attack Setup. We set the poisoning rate v to 1%, indicating
the proportion of samples poisoned by the trigger in training
data. The target label yt for the backdoor attacks method is
set to “yes” to simulate a high-risk attack scenario. Frame-
level features are extracted from the 6th layer of the WavLM-
Large model with dimension D = 1024. The similarity
threshold 7 used in the feature transformation strategies is
set to 0.75. We employed the whole utterance transformation
configuration here, applying the transformations to the entire
frame-level feature sequence of each sample. This choice was
based on preliminary analyses and ablation studies, which
indicated this approach yielded a superior trade-off between

attack success rate and stealthiness for our main compar-
isons. Speech synthesis is performed using a HiFi-GAN
vocoder, following the setup in the KNN-VC work [20].
For all baselines, follow their original configurations if any
settings are not explicitly mentioned here.

Training Setup. We trained all the victim models with the
same hyperparameters. The batch size is 64. The weights
are optimized by Adam optimizer with a learning rate of
le-4 and cross-entropy loss function. We trained 30 epochs
to make all models converge. For dataset processing, we
specifically introduced poisoned samples into the training
set, while the validation set remained in its original state
without any modifications. All experiments were conducted
using the PyTorch framework on a Nvidia RTX 4090 GPU.

B. Evaluation Metrics

For effectiveness, we examine the Accuracy Variance (AV)
and the Attack Success Rate (ASR) for each attack. The AV
represents the model’s accuracy change after the trigger is
applied during training. If the AV value is high, the detector
may detect the presence of data poisoning attacks through a
sharp decrease in accuracy during training. The ASR stands
for the hit rate of the trigger on the test set.

For stealthiness, we evaluate the attack’s stealthiness from
the following perspectives: (1) Objective Audio Quality: We
use the NISQA score to measure the objective quality
of the synthesized audio. NISQA [25] is a non-intrusive
metric that predicts the perceptual quality of speech. A higher
NISQA score indicates better audio quality. (2) Subjective
Perceptual Evaluation: We conduct a Mean Opinion Score
(MOS) test to assess the subjective perceptual quality of
the synthesized audio. 15 participants rated the perceptual
quality of 20 poisoned audio samples respectively on a scale
of 1 (worst) to 5 (best). (3) Speech Timbre Consistency:
We employ a speaker verification model ERes2Net [26] to
measure the consistency of the speaker’s voice before and
after the backdoor trigger is applied. The Timbre Consistency
Rate (T'C'R) represents the similarity between the speaker
embeddings extracted from the original and synthesized au-
dio. A higher consistency score indicates better preservation
of the speaker’s timbre.



TABLE III: The performance of different Fiye using SGC and SE strategies

on ResNet34.

w/o vowel vowel consonant consonant whole whole
trigger (SGC) (SE) (SGC) (SE) (SGC) (SE)
ASR (%) \ 99.10 99.36 98.88 98.72 99.56 99.74
AV (%) \ 1.09 0.84 2.67 1.84 0.51 0.29
NISQA 3.34 3.26 3.35 3.52 3.39 3.79 3.27
MOS 3.50 3.82 3.73 3.88 3.81 3.72 3.66
TCR (%) \ 98.2 98.8 98.4 99.1 97.2 98.7
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Fig. 2: The resistance to fine-tuning.

For robustness, we evaluate the robustness of our back-
door attacks method by measuring its Resistance to Fine-
tuning [27]. We fine-tune the backdoored model on a benign
dataset for 20 epochs. A robust backdoor attack method
should still maintain a high ASR.

C. Main Result

Attack Effectiveness. Table I demonstrates the effectiveness
of our proposed LFBA variants compared to baseline meth-
ods across four KWS architectures. All strategies achieve
excellent average ASR with minimal AV, confirming the vi-
ability of manipulating frame-level latent features for potent
backdoor injection. Notably, the simple strategies (SC/SE)
exhibit slightly higher ASR compared to their similarity-
guided counterparts (SGC/SGE), suggesting that their uni-
form transformations likely create a more consistent and
easily distinguishable pattern for the model to learn during
training.

Attack Stealthiness. As shown in Table II, LFBA achieves
the highest NISQA score, indicating near-benign audio
quality, while Ultrasonic suffer severe degradation. A similar
trend is observed in M O.S. LFBA also yields a higher TCR,
confirming that latent-space manipulation better preserves
speaker identity, whereas VSVC underperforming due to
its explicit timbre conversion. Moreover, SGC outperforms
SC, validating the effectiveness of our tailored strategy for
stealthiness. SGE, however, slightly lags behind SE, likely
due to the added perturbation from introducing new features
versus amplifying existing ones.

Attack Robustness. Figure 2 reveals that AS R gradually de-
clines from 99% to 45% after 20 epochs of fine-tuning with
a benign dataset on the victim model ResNet34. However,
the retained ASR remains significantly higher than 40%,
indicating persistent backdoor activation. The fluctuating
AV suggests partial but incomplete defense via catastrophic
forgetting.

Poisoning Rate v (%)
Fig. 3: The performance of different poisoning rate .

V. ABLATION STUDY

Chosen of strategies: As shown in Table I, compression-
based strategies generally achieve higher ASR than
expansion-based ones, with SGC strategy exhibiting superior
stealthiness. This aligns with our hypothesis that selec-
tively removing high-similarity frames preserves semantic
continuity while introducing subtle rhythmic distortions. In
contrast, SGC strategy marginally underperforms SE strategy
in ASR, likely due to its deterministic duplication avoiding
interpolation artifacts. The results suggest that redundancy-
aware compression optimizes the trade-off between attack
potency and imperceptibility.

Types of Fiarger: While our main experiments applied trans-
formations to the entire utterance’s latent features (Farger =
F) for optimal overall performance, our framework’s design
allows for more granular attacks by targeting specific lin-
guistic units. To investigate the effect of this granularity,
we leverage the grapheme-level alignment capability of our
framework (Sec III-B, Step 2) to isolate and modify features
corresponding only to vowels or consonants.

For this ablation, we selected representative keywords such
as “stop”, “yes”, “up”, and “right” and identified their core
vowel and consonant graphemes. We applied two distinct
transformation strategies, SGC and SE to different Fyre; and
evaluated the results on the ResNet34 victim model. The
performance comparison is presented in Table III.
Modifying entire segments yields the highest NISQA, out-
performing vowel-only and consonant-only backdoor attacks.
This is attributed to the holistic preservation of coarticulation
patterns—critical for naturalness. Notably, vowel-focused
attacks achieve higher ASR than consonant-based ones, as
vowels’ longer duration and spectral stability enhance latent-
trigger consistency.

The investigation into target feature granularity demonstrates
the flexibility of our LFBA framework. While targeting
specific linguistic units like vowels or consonants is feasible
and achieves high ASR, modifying the whole utterance



provides the most potent attack in terms of ASR and
AV. Stealthiness metrics result present a perceptual diver-
gence: human listeners prioritize rhythmic continuity (fa-
voring grapheme-specific transformation), whereas NI1.SQA
emphasizes spectral fidelity (favoring whole utterance trans-
formation). Modifying entire segments maintains the natural
spectral transitions between phonemes, which is critical for
speaker consistency.

Overall, these findings validate our use of the whole utterance
transformation for the main experimental evaluation while
highlighting the potential for more targeted attacks depend-
ing on the adversary’s specific goals and constraints.
Effects on poisoning rate v: Figure 3 reveals that ASR
remains robust on victim model ResNet34 even at v = 0.5%,
with SE strategy outperforming SGC strategy (95.51% for
SE and 92.98% for SGC). The marginal ASR drop at low
~ suggests latent-space triggers exhibit high memorability
despite sparse poisoning. Concurrently, AV decreases with
v from 1.38 to 0.21 for SE, indicating minimal interference
with benign task learning. This confirms LFBA’s viability in
low-resource attack scenarios without sacrificing stealthiness.

VI. CONCLUSIONS

This paper introduces LFBA, a latent-space frame-level
backdoor attack framework. LFBA embeds triggers through
stealthy temporal dynamics alterations without semantic con-
tent or speaker characteristics changes. Extensive experi-
ments validate LFBA’s effectiveness, stealthiness, and robust-
ness. Compared to prior methods, LFBA eliminates reliance
on perceptible signal modifications. Our work further demon-
strated the flexibility with more granular attacks on targeting
specific linguistic units except for an entire utterance. This
adaptability, coupled with the core mechanism of latent-space
frame-level manipulation, suggests that the principles behind
LFBA are not limited to KWS. We believe this approach has
broader implications, potentially serving as a blueprint for
stealthy backdoor attacks or highlighting vulnerabilities in a
wider array of speech processing applications. Consequently,
our findings underscore the critical need for developing
robust defenses against such latent-space threats and for
promoting secure data handling practices across all speech
and audio-related domains.
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