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Abstract. Emotional Text-to-Speech (E-TTS) aims to generate speech 
that not only sounds natural but also conveys rich emotional expres-
sions. Unlike traditional TTS, E-TTS must capture complex elements 
such as pitch, prosody, rhythm, and timbre variations to accurately con-
vey emotions. Recently, some classical deep learning-based methods, such 
as Tacotron2, Transformer-TTS, FastSpeech2, and VITS, have signif-
icantly improved speech synthesis quality. However, these models still 
face challenges like alignment instability, strict duration constraints, and 
difficulties in generalizing across emotions and styles. The VITS model, 
while capable of high-quality speech synthesis, struggles with integrating 
emotional information due to its complex architecture. To address this, 
we propose RoStyleVITS, an end-to-end emotional TTS model built on 
VITS. RoSty leVITS incorporates emotion-infused styleformer blocks and
replaces the standard attention layer with a self-attention layer using
Rotary Position Embedding (RoPE) to enhance text sequence model-
ing. Our method outperforms existing state-of-the-art emotional speech
synthesis models in both subjective and objective evaluations, demon-
strating improved emotional expression and synthesis quality.
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1 Introduction 

Emotional Text-to-Speech (E-TTS) is a crucial branch of text-to-speech [1– 6] 
that aims to generate speech that not only exhibits high naturalness but also 
conveys rich emotional expressions. Unlike traditional Text-to-Speech (TTS) sys-
tems, E-TTS needs to model more complex speech elements, including pitch,
prosody, rhythm, and timbre variations [7, 8], to accurately express target emo-
tions. This technology has broad applications in intelligent voice assistants, vir-
tual character dubbing, gaming, and education.

In recent years, research on emotional speech synthesis has mainly focused on 
two categories: parametric modeling methods and deep learning-based methods. 
Parametric modeling approaches, such as Hidden Markov Models (HMMs) [9] 
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and rule-based methods like PSOLA [10], are difficult to achieve high natural-
ness and expressive speech. In contrast, most deep learning methods are based 
on several classical speech synthesis architectures [11– 19], such as T acotron2
[1], Transformer-TTS [4], FastSpeech2 [3],  and  VITS [5]. E-TTS methods that 
are built on these models have significantly improved synthesis quality and effi-
ciency. However, these methods still suffer from certain limitations. For exam-
ple, Tacotron2 and Transformer-TTS rely on an attention mechanism for align-
ment, which can lead to instability in synthesized speech, such as frame skip-
ping and misalignment. FastSpeech2, while addressing alignment issues, enforces 
strict duration constraints, making it difficult to control speech timing flexibly. 
Moreover, existing approaches often struggle with cross-emotion generalization 
and multi-style speech modeling. The VITS m odel is trained based on varia-
tional autoencoder (VAE) theory, achieving exceptionally high-quality synthe-
sized speech and allowing for stochastic prediction of speech duration. However,
due to its complex architecture, it is not easy to integrate emotional information.

We aspire to create high-quality synthesized speech, so this paper chooses 
VITS as the foundation for our proposed model. To address the challenge of 
integrating emotional styles, we propose RoStyleVITS, an end-to-end novel emo-
tional text-to-speech model that combines the advantages of b oth autoregressive
and non-autoregressive models. Previous studies have demonstrated the effec-
tiveness of self-attention models in speech generation [20]. Accordingly, we pro-
posed to utilize emotion-shared double styleformer blocks on both sides of the 
decoder’s MRF layer for emotion infusing. Additionally, we replace the stan-
dard attention layer in the original text prior encoder with a self-attention layer 
based on Rotary Position Embedding (RoPE). This substitution improves the 
effectiveness of text s equence modeling. Experiments demonstrate that our pro-
posed method outperforms existing state-of-the-art emotional speech synthesis
methods in both subjective and objective metrics.

2 Background 
2.1 Text-to-Speech 

Modern deep learning-based speech synthesis models can be broadly categorized 
into autoregressive methods (which learn Pθ([yt+1]|[yt,  w1,  w2, ..., wN ]) and non-
autoregressive methods (which learn Pθ([y1,  y2, ..., yT ]|[w1,  w2, ..., wN ]) ) based on
their implementation principles. The yt denotes a speech signal point, and the
wn denotes a text unit. Tacotron2 [1], Large Language Model based TTS (LLM-
TTS) [6], and Transformer-TTS [4] fall into the autoregressive category , while
VITS [5] and FastSpeech2 [3] belong to the non-autoregressive category. Emo-
tional speech synthesis needs to generate speech with highly variable emotional 
prosody, so models that allow fl exible control over speech duration are better
suited for this task.

2.2 VITS 

VITS (Variational Inference Text-to-Speech) is a deep learning-based model 
for text-to-speech (TTS) synthesis. It combines the strengths of variational
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autoencoders (VAEs), normalizing flows, and recurrent neural networks to gen-
erate high-quality, natural-sounding speech. VITS is designed to handle both 
prosody and content simultaneously, making it more efficient and capable of 
generating expressive and diverse speech. By using a probabilistic framework, 
VITS can model the uncertainty in speech synthesis, allowing for more flexi-
ble and robust TTS systems. Its end-to-end architecture eliminates the need for 
complex, hand-engineered features, enabling seamless and fast training. Since the
duration of the generated speech can vary randomly (depending on the speaker
or emotional control conditions), the VITS model is well-suited as an emotional
TTS architecture.

3 Method 
3.1 Framework Based on VITS 

Our proposed framework is built on VITS, as shown in 1, We added a style 
encoder (Gsenc) and the well-designed decoder in VITS as the style decoder 
(Gsdec). The other modules include the Normalizing Flow (Gfθ) [21], Monotonic 
Alignment Search (MAS) [5], the text encoder (Gtext, including a projection 
layer), the Stochastic Duration Preditor (SDP), and the posterior encoder(Gq). 
Then, we introduce the framework’s overview and individual modules. The whole 
model Gθ can accept an input text xtext and the emotional reference utterance 
y ref , the model synthesizes speech ysyn with emotional style taken from the
reference speech. The text’s true waveform is y.

Overview. Our proposed framework can be formulated as a conditional VAE, 
aiming to maximize the variational lower bound (also known as the evi-
dence lower bound, or ELBO) of the intractable marginal log-likelihood of the 
log[Gθ(ysyn|xtext,  ysyn)]: 

log[Gθ(y|xtext,  yref )] ≥ EGq
log[Gsdec(y|zq, ysyn)] − log

Gq(zq|y)
Gtext(zp|xtext)

(1) 

where Gtext(zp|xtext) denotes a prior distribution of the text’s latent variables 
zp.  The  Gsdec(y|zq, ysyn) is the likelihood function of a true waveform with the 
emotion condition ysyn, making it generate target emotion speech. In the VAE, 
first, we incorporated a posterior encoder Gq(zq|y), which estimates the po ste-
rior distribution zq of real speech, helping it achieve point-to-point probability
distribution space alignment between true speech and the text.

Posterior Encoder. The posterior encoder Gq consists of multiple residual 
blocks used in Glow-TTS [22]. A Glow-TTS residual block consists of lay-
ers of dilated convolutions with a gated activation unit and skip connection. 
We add speaker embedding into the residual blocks as global conditioning 
van2016wavenet. In the output step, the linear projection layer above the blocks
produces the mean and variance of the normal posterior distribution μq, σq,
which means zq = μq + · σq.
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Fig. 1. Proposed framew ork.

Prior Modules. The prior encoder consists of a text encoder Gtext and a nor-
malizing flow Gf  θ. The text encoder accepts the phoneme index sequences and 
outputs the linguistic hidden representation’s prior distribution μp, σp with a
linear projection. We constructed the Gtext and Gfθ by Rofomer’s encoder [23] 
that utilizes Rotary Position Embedding (RoPE) to enhance the linguistic rela-
tionships. Under the guidance of RoPE, the Transformer-based speech emotion 
synthesis model achieves lower s equence loss, meaning that the reconstruction
quality of the speech spectrogram is improved.

Other Modules. Monotonic Alignment Search (MAS) to align input phonemes 
with the target waveform by maximizing the ELBO rather than the exact log-
likelihood. This redefined MAS ensures the alignment remains monotonic and 
non-skipping, reflecting natural speech patterns. Additionally, we introduce a 
Speaker and Emotion-Dependent Projection (SDP) module, where a linear layer 
in tegrates speaker and emotion embeddings—extracted from the style decoder—
into the text representation, enabling the model to generate expressive speech
conditioned on emotional prompts.

3.2 Style Encoder and Decoder 

Our proposed core modules are the style encoder that encodes the input utter-
ance’s emotion information into the embedding and the style decoder that 
expands the lengths of zq and squeezes the dimension to a single-channel wave-
form.

Style Encoder. We apply the CAM++ model [24] as the emotion encoder. The 
style encoder accepts a speech spectrogram and outputs an emotion embedding. 
The entire model consists of two parts: a residual convolutional network as the
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Fig. 2. The style decoder and the styleformer block. The decoder and the generator of 
HiFi-GAN have the same architecture. The styleformer block uses emotion embedding
to compute an attention mechanism with emotional style.

front end and a time-delay neural network structure as the backbone. The front-
end module is a 2D convolutional structure designed to extract more localized 
and detailed time-frequency features. The backbone module uses dense connec-
tions to reuse hierarchical features and improve computational efficiency. At the 
same time, each layer incorporates a lightweight context-aware mask m odule,
which extracts contextual information at multiple scales through pooling opera-
tions. The mask helps remove irrelevant noise from the features while retaining
key emotion information.

Style Decoder. As shown in Fig. 2, the style decoder consists of multiple 
expanding layers which include a transposed convolution, a front styleformer 
block, a multi-receptive field fusion (MRF) module, and a shared styleformer
block. Based on the innovations in the StyleFormer [20], we share the emotional 
style embedding vector with the style transfer modules of the two twoSty le-
Formerr blocks as shown in Fig. 2, indicated by the red arrow. Then, we will 
describe the styleformer block.

We assume the style block accepts input spectrograms x ∈ Rb,t,d and emotion 
embedding Es ∈ Rb,2d,  the  Es is splitter split into two equal-length vectors, 
which serve as affine coefficients (γs,  βs) ∈ Rb,1,d. We create some trainable 
weights {W  Q0,  W  K0,  W  V0,  W  M0,  W  U0}  ∈  Rb,d,d during the model initialization
phase. Then, these weight matrices are infused with the emotional style of the
target speech through linear operations (Using WQ0 matrix as an example) and
used the weight normalization [25] (WN) for better training convergence:
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W  Q  = γs · W  Q0 + βs (2) 

W  Q1 = 
W  Q  

d 
k =0 WQ 2

i,j,k

(3) 

Then the input x is also infused with the emotional style: 

x = γs · x − μb,t

σ2
b,t +

+ βs (4) 

where μb,t denotes the mean of x along the d-dimension, σ2 
b,t denotes the variance 

of x along the d-dimension, and represents a small constant (e.g., 1−5)  to  
prevent division by zero. Finally, we adopt the self-attention process with the 
style weights and sty le input sequence:

x =
x · (WQ1) · (x · WK1)t√

d
· (x · WV1) · WM1 + (x · WU1) (5) 

The style block outputs the stylized hidden spectrogram x . We set two style-
former blocks before and after the MRF in each layer for learning the acoustic 
emotion information from the emotional target speech, which shares the same 
emotion embedding. Considering the transposed convolutions and MRFs, we set 
the same weight parameters as the HiFi-GAN generator. Thus, the style decoder
can generate the emotional raw waveform with the reference speech.

4 Experiments Setup and Metrics 
4.1 Dataset 

A successfully trained speech synthesis model generally requires a dataset with 
a total duration of more than 3 h, and each speaker should h ave at least 50
utterances. Based on this, we chose to use the ESD [8]. The ESD database 
consists of 350 parallel utterances spoken by 10 native English and 10 native 
Chinese speakers and covers 5 emotion categories (neutral, happy, angry, sad 
and s urprise). Each audio sample has a sampling rate of 16 kHz and a 32-bit
floating-point depth. Beside, EmoV-DB [26] is also considered. The database 
covers 5 emotion classes for four speakers, c ontaining two males and two females.

4.2 Training Configuration 

Since the input to the posterior encoder is the Short-Time Fourier Transform 
(STFT) spectrograms, the parameters for extracting the STFT spectrograms 
are as follows. We use a window length of 1024 (equal to FFT banks) and a 
hop length of 160. The absolute amplitude of each audio sample is constrained
between 0 and 1. During training, all the learning rates and other parameters
are kept consistent with the settings of VITS.
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4.3 Baseline Models 

We chose the following baselines. (1) TP-GST [27]  +  FS2 [3]. The model is based 
on FastSpeech2 and a global style-token emotion encoder. (2) EmoQ-TTS [12]. 
(3) MsEmoTTS [18]. (4) METTS [15]. Most of these models are based on the 
FastSpeech2 model and have adva nced capabilities for stylized emotional speech
synthesis.

4.4 Metrics 

Subject Metrics. The subjective evaluation metrics mainly reflect human per-
ception of the naturalness and quality of generated speech. We use the Mean 
Opinion Score (MOS) and the A/B preference test to assess the natural-
ness of generated emotional speech and human emotional preference for different 
models. The MOS is measured by some annotators to evaluate sound quality on 
a 5-point scale. The higher the speech quality, the higher t he MOS score. In the
test, the subjects are asked to choose which of the two speeches in the same
sentence by different models is perceptually more expressive.

Objective Metrics. Objective metrics evaluate the quality and emotional cat-
egory of speech through speech feature comparison and mod el-based automatic
classification. We computed Mel Cepstral Distortion (MCD) [28], Root 
Mean Squared Error of Log f0 (RM SEf0 ) [29] metrics for objective eval-
uation. The f0 denotes the pitch. The MCD measures the spectral difference 
between generated and real speech, while RM SEf0 measures the fundamental 
frequency difference. The l ower these two metrics are, the better the quality of
the generated speech.

Additionally, we use a series of pre-trained models to evaluate the quality of 
generated utterances. We employ the NISQA model [30] to automatically predict 
the objective MOS score of utterances, referred to as N-MOS, which reflects the 
objective quality o f the utterances. Furthermore, a speech emotion recognition
model CAM++ [24], which is pre-trained on the ESD dataset, is used to predict 
the emotional category of generated utterances, and we compute the Emotion 
Classification Macro F1 Score (Emo-F1), which reflects the accuracy of
emotional expression in the generated utterances. Finally, we use the Whisper
[31] model to calculate the Word Error Rate (WER) of the generated speech, 
which reflects the overall generation quality of the synthesis model. The higher 
the N-MOS and Emo-F1 metrics, the closer the speech’s objective quality and 
emotional tendency are to real sp eech. Conversely, the lower the WER metric,
the more successful the training of the speech synthesis model.

5 Ablation Study 

As shown in the bottom two rows of the Tables 1 and 2, we constructed some 
model configurations for the proposed model: (1) eVITS. A VITS model that
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only additionally includes the speaker encoder layer. (2) StyleVITS (w/o 
RoPE). The VITS with style modules but does not contain the RoPE text 
encoder. (3) RoVITS (w/o style). The VITS with RoPE text encoder but 
does not contain the style modules. (4) RoStyleVITS. Proposed model, which
contains style modules and RoPE text encoder.

Table 1. Results on E SD dataset

Model MOS/N-MOS↑ MCD↓ RM SEf 0 ↓ Emo-F1↓  ↑  WER↓ 
Ground Truth 4.25/4.02 – – 99.51% 2.10% 
TP-GST + FS2 [3] 3.68/3.44 4.89 54.43 98.16% 3.64% 
EmoQ-TTS [ 12] 3.72/3.53 4.81 53.15 99.39% 3.52% 
MsEmoTTS [ 18] 4.02/3.83 4.76 53.04 99.51% 3.48% 
METTS [ 15] 4.02/3.84 4.74 52.67 99.48% 3.41% 
eVITS 3.52/3.48 4.96 54.56 97.89% 3.70% 
StyleVITS (w/o RoPE) 3.79/3.67 4.87 49.56 98.54% 3.21% 
RoVITS (w/o style) 3.84/3.72 4.67 54.37 97.51% 3.57% 
RoStyleVITS 4.12/3.96 4.45 47.98 99.65% 2.78% 

Table 2. Results on E moV-DB dataset

Model MOS/N-MOS↑ MCD↓ RM SEf 0 ↓ Emo-F1↓  ↑  WER↓ 
Ground Truth 4.27/4.01 – – 99.47% 2.08% 
TP-GST + FS2 [3] 3.65/3.42 4.82 53.98 98.12% 3.59% 
EmoQ-TTS [ 12] 3.70/3.52 4.79 53.19 99.35% 3.48% 
MsEmoTTS [ 18] 4.04/3.78 4.75 53.10 99.53% 3.38% 
METTS [ 15] 4.07/3.90 4.70 52.43 99.59% 3.37% 
eVITS 3.48/3.39 4.90 54.72 93.72% 3.82% 
StyleVITS (w/o RoPE) 3.75/3.67 4.75 48.76 98.66% 3.16% 
RoVITS (w/o style) 3.82/3.70 4.68 55.73 96.89% 3.37% 
RoStyleVITS 4.10/4.02 4.39 47.56 99.42% 2.74% 

6 Results 

6.1 Objective Metrics Results 

As  shown  in  Tables 1 and 2, the experiments demonstrate that the MOS scores 
of our proposed method reached approximately 4.10, surpassing those of the
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more advanced baseline models. This indicates that the emotional speech gen-
erated by our proposed method is perceived as high-quality by human listeners. 
In the MOS evaluation, our analysis takes the ESD dataset as an example, as it 
contains a longer total duration of speech data, making it more representative 
for drawing accurate conclusions. The eVITS model lacks a proper emotional 
vector fusion module and suffers from convergence difficulties, resulting in lower 
synthesized speech quality. As a result, it only achieves a MOS score of 3.52. The 
StyleVITS (w/o RoPE) model does not include the RoPE module in its prior 
encoder, but it features a style transfer module that promotes model conver-
gence and emotional fusion, achieving a better MOS score of 3.79 compared to 
eVITS. The RoVITS (w/o style) model lacks the emotional fusion module but 
includes the RoPE module, which enhances the effectiveness of text encoding, 
thereby reaching a MOS score of 3.84. This demonstrates that the RoPE module 
positively influences the q uality of synthesized speech. The RoStyleVITS model
incorporates both of our proposed key modules and thus achieves a higher MOS
score of 4.12, outperforming the baseline models. Through these experiments,
we demonstrate that both the RoPE and style blocks contribute positively to
the quality of speech synthesis. A similar conclusion can be derived from the
EmoV-DB dataset. Due to the shorter total duration of speech in EmoV-DB,
the final experimental metrics are lower than those obtained on the ESD dataset.

In the Fig. 3, we present the A/B preference test between the baseline model 
and the proposed method. In the test, the subjects are asked to choose which 
of the two speeches for the same sentence, by different models, is p erceptually
more expressive. The experiment proves that RoStyleVITS is preferred over the
baseline models.

6.2 Subjective Metrics Results 

As shown in Tables 1 and 2, in the objective metric experiments, lower MCD, 
RMSE, and WER values indicate higher generated speech quality, while a higher 
Emo-F1 score demonstrates the model’s ability to successfully generate utter-
ances with reference emotion. We analyze the emotion-related metrics. The 
experimental results show that models lacking the effective emotional fusion 
blocks, such as eVITS and RoVITS (w/o style), perform poorly on RMSEf0

and emo-F1 metrics. This indicates that the generated target emotional styles
are either less distinguishable or exhibit noticeable deviation, highlighting the
importance of our proposed style transfer block.

Next, we consider the semantics-related metrics. The results show that both 
the RoPE and the emotional style transfer block lead to improvements in these 
metrics. This indicates that they improve reconstruction quality in two ways:
efficient textual sequence encoding and weight normalization.
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Fig. 3. A/B preference test

7 Conclusion 

This paper proposes RoStyleVITS, a model built upon VITS that enhances 
text prior encoding using RoPE. Additionally, it employs a styleformer module 
with shared emotional embedding to construct an end-to-end multi-emotion and 
multi-speaker text-to-speech model. We propose replacing the standard attention 
layer with the RoPE attention layer to enhance the text encoder. Additionally, 
we design a dual-layer styleformer module with shared emotional embeddings 
in the decoder of the VITS model, which effectively injects the style of the 
reference speech during the decoding process. Experimental results show that
our proposed method outperforms the baseline model in both subjective and
objective metrics, indicating that our model can synthesize high-quality emo-
tional speech. Furthermore, due to the use of the emotional encoder, it also has
zero-shot generation capabilities.
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