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Abstract: With the development of blockchain technology. the application of
cryptocurrency has become more extensive. Ethereum, as one of the most
representative cryptocurrencies, provides a freer blockchain technology-
smart contract. The new procedural trading mode created by smart contract
has been widely used in sensitive services such as transaction payment and lo-
gin authentication, and has good scalability. But at the same time, it also
brings a new attack surface and more security threats. In order to solve the
security problem of smart contracts, this paper proposes an automated meth-
od for detecting smart contract vulnerabilities. The syntax tree of the smart
contract is used to generate the multidimensional analysis model consisting of
control flow graph, the function call flow graph and the data dependency
graph, and the vulnerability generation principle is combined to realize the
vulnerability detection of the smart contract. In the analysis of 15394 con-
tract addresses from Ethereum, the method proposed in the paper found that
there was more than one security vulnerability in 4772 contract addresses,
and the average detection vulnerability is about 80% . At the same time,
compared with other vulnerability detection methods, it has better detection
results.
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Since the first introduction of Bitcoin in 2009, the endless stream of digital
currencies has received increasing attention and is considered to be one of the
most groundbreaking technologies in recent years. Built on cryptographic-based

secure communications and distributed computing, digital currency is a decen-
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tralized monetary system based on blockchain technology. Blockchain can be
thought of as a public verifiable data structure that provides data security for
digital currency transactions. The data structure is implemented on a point-to-
point network, and the nodes of the entire network must follow a consensus
mechanism to generate and update data, which is responsible for managing the
transaction processing and maintaining the consistency of the blockchain.
Bitcoin is currently the most popular blockchain application since the birth
of digital currency, with a peak market capitalization of $ 30 billion. As of Jan-
uary 2019, there were 2086 digital currencies in the world. Bitcoin accounted for
51. 9% of the total market value of digital currency in the world. Ethereum and
Ripco were the runner-up and runner-up respectivelyt”. In 2013, the Ethere-

2] which was ranked second in the market share, was created by program-

um
mer Vitalik Buterin. Buterin has made distributed computing not limited to dig-
ital currency transactions, and designed the Ethereum blockchain. Ethereum has
largely expanded the way in which consensus mechanisms deal with transac-
tions. It allows trading operations to execute program code that is turing-complete,
which we call smart contracts. Ethereum also introduced concepts such as virtual ma-
chine and smart contracts into blockchain platform for the first time. It is also the
most active blockchain platform created and used by smart contracts.

Smart contracts are contracts that have the ability to execute code, allowing
for business models such as equity-based crowdfunding., patent authentication
and end-to-end credit, or shared wallets that need to be approved by multiple
owners before executing a transaction. In Ethereum, the basic building language
of smart contracts is a high-level programming language called Solidity, which
implements the functions of smart contracts through Solidity language and com-
piles into binary bytecodes suitable for Ethereum virtual machines. Participants
in the contract can interact with the deployed smart contracts through Ethereum
trading operations and use a consensus mechanism to ensure that the program is
executed correctly in the EVM.

Of course, the complexity of Ethereum brings more security risks. From
The DAO security incident™! to BEC's Batch Overflow vulnerability, smart contract
vulnerabilities directly or indirectly lead to economic losses of hundreds of millions of
dollars. Vulnerability detection research on smart contract vulnerabilities is becoming
more and more necessary. In order to effectively detect smart contract vulnerabilities,
we have made the following contributions in this paper:
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1)Effective vulnerability Detection. Using the syntax tree of the smart con-
tract to generate the multidimensional analysis model consisting of control flow
graph, function call flow graph and data dependency graph, combined with the
vulnerability feature, an effective vulnerability detection is performed on the
smart contract.

2) Vulnerability Feature Library Construction. By analyzing a large number
of smart contract vulnerability codes, the vulnerability features of 11 kinds of
smart contract vulnerabilities are analyzed, and the smart contract vulnerability
feature library is formed.

3) Experimental Evaluation. Through a large number of tests, the pro-
posed smart contract vulnerability detection method is evaluated. The experi-
mental results show that the proposed detection method has good accuracy and

detection efficiency, and the average detection vulnerability is about 80 %.

1 Methodology

Since most static audit methodst"® do not execute applications, by analy-
zing the function call relationship, data flow and other information, it is detec-
ted whether there is abnormal behavior inside the function, which greatly speeds
up the speed of security audit analysis. Based on static analysis and detection,
this paper designs a smart contract vulnerability detection method for security
audit analysis of Solidity code. It includes three steps as shown in Figure 1. pre-

treatment, contract flow graph analysis, and vulnerability feature analysis.
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Figure 1 Detecting Vulnerabilities in Smart Contracts Based on Multidimensional Analysis Model
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1) Contract Code Pretreatment. The code feature is extracted from the de-
tection code and parsed by the Solidity code to generate a syntax tree;

2)Multidimensional Analysis Model Generation. Based on the function, u-
sing the syntax tree to generate a control flow graph, get the statement control
relationship of the contract code; Use the syntax tree as input to generate a
function call flow graph, and observe the parameter transfer between functions,
get the function call relationship in the contract code. The data dependency
graph is further generated by the control flow graph to observe the data flow de-
pendency between the basic blocks inside the function, get the data stream char-
acteristics;

3) Vulnerability Feature Analysis. Base on the control flow graph, function
call flow graph and data dependency graph, we get statement control relation-
ships, function call relationships, and data flow features, then combine them in-
to a multidimensional model, and compare the model with the vulnerability sig-

nature database to get the vulnerability analysis result of the contract.
1.1 Contract Code Pretreatment

During the pretreatment process, the input smart contract code is parsed by
the contract syntax tree. The grammar tree analysis uses the recursive descent
analysis method, and the analysis includes statement node analysis, expression
node analysis and keyword node analysis. The specific statement nodes of the a-
nalysis are shown in Table. 1, and the “.” in the table is an assignment symbol,
such as “a:e+1”, which means that the expression “e+1” is represented by the
symbol a. The symbol “|” means “or”. The symbol “?” indicates that the previ-
ous part appears 0 to n times. For example, the production “a?” means that a
appears 0 to n times, and n is any positive integer. Finally, when the last termi-
nator match is completed, the contract syntax tree is parsed and an abstract syn-

tax tree is generated.

Table. 1 Syntax Tree Node Production Specification Table

Syntax tree node Node grammar production Explain

contractDefinition  contract|library @Id{:-+ }  Create a contract node or library contract node

eventDefinition function|event @Id(v?){S} Create an event node
functionDefinition  function @Id(v?){S} Create function declaration node
block {S} Create a code block node
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Syntax tree node

Node grammar production

Explain

variableDeclara-

tionStatement
variableDeclara-
tion

typeName

returnStatement

statement

expressionState-

ment

identifier

ifStatement
functionCall
whileStatement
forStatement
structDefintion
throwStatement
breakStatement

continueStatment

vle;

v:T @Id (= )7 ;7

T

return e

S . if Statement;

while Statement;

for Statement;

block;

continue Statement;

break Statement;

return Statement;

throw Statement;

variable Declaration State-

ment;

@Id

if e S (else S)?;
e (T @I ;
while (e) S;
for(S;e;e)S;
struct @Id{v?};
throw;

break;

continue;

Create a variable declaration node

Create a variable declaration or assignment
node, denoted by v
Create a type node, denoted by T

Create a return statement node

Create a statement node. denoted by S.
Including if statement node, while loop
statement node, for loop statement node,
code block node, continue statement node,

break statement node, return statement

node, throw statement node, variable de-

claration statement node.

Create an expression node,

denoted by e

Create a keyword node,

represented by @Id

Createa if statement node

Create a function call node

Create a while loop statement node
Create a for loop statement node
Createa struct structure node
Createa throw statement node
Create abreak statement node

Create acontinue statement node

The contract code converted into the form of an abstract syntax tree. The
logic and data structure of the smart contrat was expressed in the form of a syn-
tax tree, which can improve the analysis efficiency of the contract code while o-
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mitting the syntax details. This paper analyzes the different symbols in the con-
tract based on the recursive descent analysis algorithm, where each non-terminal
symbol corresponds to a parsing process. The program parses from the begin-

ning of the contract code until it resolves to the last terminator.

1.2 Multidimensional Analysis Model Generation

1. 2.1 Control flow graph generation

Control flow graph is mostly used for intermediate abstract representations
of program analysis. We use control flow graph here to represent the control
flow of the contract for subsequent analysis. We define the Contract Control
Flow Graph (CFG) as a directed graph that can be represented as a binary group
CFG=(N,E). Where N is the set of nodes of the control flow and E is the set
of tedge elements of the control flow. We store the control flow graph CFG u-
sing the storage method of the cross-linked list, and represent the nodes in the
node set N with the following data structure. Basic Block is the basic block of
the node. The contract source code is represented by the abstract syntax tree,
including the start and end lines of the code. Firstin represents a collection of
edges pointing to the current node, and firstout represents a collection of edges

with the current node as the starting node.

01: class CFGNode {

02 BasicBlock block = null;

03 CFGEdge firstin = null;

04 . CFGEdge firstout = null;
05: }

The control flow edge in the edge set E is represented by the following data
structure. verNum is the starting point of the current edge, and headVex is the
end point of the current edge. HeadLink points to theneighbor that ends at the
same point as the current edge. AdjLink points to the neighbor that starts at the

same point as the current edge.
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01: class CFGEdge {

02 int verNum = —1;

03: int headVex = —1;

04 . CFGEdge headLink = null;
05 CFGedge adjLink = null;
06: }

The control flow graph mainly analyzes four types of statements in the So-
lidity language grammar, including sequential statements, conditional branch
statements, jump statements, and loop statements. As shown in Table. 2, the
sequential statement refers to the assignment operation and the comparison oper-

ation.

Table 2 Comparison Table of Statement Types and Keywords in Solidity Grammar

StatementType Keywords

Arithmetic assignment operation, comparison operation:

Sequential Statements
oo/, > < =008 L < >0
Conditional Branch Statements if, require, assert

Jump Statements Function Call, return, continue, break, throw

Loop Statements while. for, do

Definition: A basic code block is a collection of code that contains multiple
instructions. The program will run from the beginning of the collection to the
end of the collection. The process of creating a control flow graph is the process
of breaking down the program code into individual basic blocks and edges.

When we create a basic block, we follow the following rules:

1) Create a basic block based on the first statement of the current function;

2) When entering a conditional branch statement, jump statement, or loop
statement, the current statement is used as the termination statement of the bas-
ic block of the current analysis and a new basic block is created;

3) Add the sequence statement to the current basic block.

The following is an algorithm description of the control flow graph we crea-

ted H
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INPUT. Abstract Syntax Tree(AST)
OUTPUT: Control Flow Graph(CFG) , Function Call Stack(FCS)
INITIALIZATION:

Initialize the start node Start , end node End and empty node CFGNode of the genera-
ted graph;

Assign CFGNode to the child node o f start . and then use CFGNode as the basic block o f
the current analysis ;

set the basic block stack and the jump stack to be empty ;

BEGIN.
for each ASTNode in AST do:
switch(ASTNode) :
ifASTNode is Sequential Statement:
Add the current statement to the current block ;
Break;
end if

if ASTNode is Conditional Branch Statement:

Put the condition into the current block and end the current block ;

pushing the basic block onto the basic block stack ;

Recursively call the algorithm that creates the CFG to create the else part of con-
trol flow graph, and use the head node of the created graph as the child of the current
block ;

Break;

end if

if ASTNode is Jump Statement:
Sawve the statement to the current block and end the current block ;
Pushing the basic block onto the basic block stack ;

Find the target address of the jump statement in basic block stack ;

if found:
Point the child pointer of the current block to the found basic block ;
end if

if not found:
Sawve the current block pointer and the number of lines of the jump statement into
the jump stack ;
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end if

if the statement is a Function Call Statement:
The current function definition AST, the called function, and the incoming
parameters are logged to the function call stack FuncCallStack ;
Create an empty node as the current block ;
Break;
end if
end if

if ASTNode is Loop Statement;

Put the condition into the current block » and end the current block . pushing the bas-
ic block into the basic block stack ;

Recursively call the algorithm that creates CFG, and use the node that executes the
internal flow graph as the child of the current block ;

The End of the node of the created graph points to the previous basic block ;

break

end if

end swich

Retraverse the jump stack , add jump edges;
Retraverse the control flow graph. find the basic block whose control pointer is empty
in the flow graph, and point its child pointer to the End node ;

end for

1.2. 2 Function Call Flow Graph Generation

The generated control flow graph mainly analyzes the control flow within
the subroutine, but also pay attention to the parameter transfer and dependen-
cies between functions in the contract code audit. Because the trigger point of
the vulnerability and the actual flawed code are often not in a function area. The
analysis of the function call flow requires the declaration of the function as a col-
lection of nodes and the function call as a collection of edges of the node. The

following is an algorithm description for creating a function call flow:

INPUT: Abstract syntax tree(AST), function call stack(FCS)
OUTPUT: function call flow graph(FCG)
INITTIALIZATION.
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If the process is the first call, apply the start node Start, end node End, and
empty node FCGNode of the generated graph . set the successor node of start to FCGNode ,

and set FCGNode as the current node

BEGIN:.
for each ASTNode in AST do:
if ASTNode isFunction definition grammar
Add function node;
break

end if

for each funcCall in FCS do:
Add a pointer from the calling function to the called function ;
break ;

end for
Retraversing the function call flow graph. find the basic block whose child
pointer is empty in the function call flow graph, and point its child pointer to the End

node ;

end for

1. 2.3 Data Dependency Graph Generation

In the program code, the input data is passed through the conversion of dif-
ferent statements. Therefore, it is necessary to analyze the operational behavior
between programs and the dependencies between data variables. A data depend-
ency graph is a directed graph that records data dependencies between nodes.
For the sake of easy understanding, we define that the variable v, data depends
on the variable v;. If and only for the storage space of the variable v,, there is
an execution path: the variable v, is a write operation to the storage space, and
the variable v, is a read operation to the storage space. The following is an algo-

rithm description of data dependency analysis:

INPUT: Control Flow Graph(CFG)
OUTPUT: Data Dependency Graph(DDG)
INITIALIZATION 1.
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I f the process is the first call s apply for the start node Start » end node End , and
empty node DDGNode of the generated graph . set the successor node of start to DDGNode ,
and set DDGNode as the current node ;
INITIALIZATION 2.
Add all global variables to the Globals list i f the procedure is the first call

BEGIN:
for each CFGEdge in (All sides in the control flow graph) do:
if CFGEdge isCFGNode:
for each sentences in Nodes do:
if sentences isVariable declaration:
Add the current variable to the current node and create a new node while re-
cording the CFGNode it belongs to;
break;

end if

// V=1 =0y represents all variables to the right of the equation
//op represents the operator of all data, such as:+,—, % ./, >,<,=,1,
~, &, |, <<, >,
if sentences is Assignment statement v, =v, | op*** Vi :
I f the data node list contains the variable v, s retrieve v, in Globals ;
If v, is not included in the data node list s create a new node v, and record
the CFGNode to which it belongs ;
Add a side that points to v, by v, ;
Traverse all variables until variable v, ;
break
end if
break
end for

end if
Re-traversing the data dependency graph, finding the basic block in which the
child pointer in the data dependency graph is empty , and pointing its child pointer to the

end node ;

end for

So far,based on the control flow chart, function call flow chart, and data
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dependency graph, we create a contract analysis multidimensional model contai-
ning statement control relationships, function call relationships, and data flow
features, which including structure information, control flow information, vari-
able transfer information, function call information and data dependency infor-

mation.
1.3 Vulnerability Feature Analysis Module

The analysis of vulnerability features requires a comparison of the pre-con-
structed vulnerability model with the contract multidimensional model. The fea-
ture model of the vulnerability is mainly the feature function for each vulnerabil-
ity and the data flow model necessary to trigger the vulnerability.

As shown in Table. 3. , the Source is defined as an untrusted input source,
the Bug is a vulnerability feature, and the Sink is a sensitive operation point. all
the parameters controllable by the attacker in the smart contract are regarded as
Source, which mainly includes the parameters of all functions, all global varia-
bles of the contract, and msg. data, msg. sender, tx. origin, msg. sender. value.
Transfer operations, modify amounts, execute code, the operations that can
modify any global variables and selfdestruct, suicide, call, callcode, delegate-
call, transfer, send as sensitive operations Sink.

Defines that the contract is in a vulnerable state if and only if there is a con-
trol flow from Source to Sink, while the control flow contains corresponding

features that match the vulnerability features that are expected to be defined.

Table 3 Corresponding Operations of Source and Sink Nodes

Smart contract
Node feature
analysis node

The parameters of all functions, all global variables of the con-
Untrusted Input Source .
tract, and msg. data, msg. sender, tx. origin, msg. sender. value

. ) Transfer operations, modify amounts, execute code, the opera-
Sensitive Operating

} ) tions that can modify any global variables andselfdestruct, suicide,
Point Sink

call, callcode, delegatecall, transfer, send

Take the reentry vulnerability as an example to illustrate how to construct a
vulnerability model in advance. Reentry vulnerabilities are also called recursive
call vulnerabilities. In the “TheDAQ” security incident™, attackers used reen-
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try vulnerabilities to steal more than 360,000 Ethereum, resulting in more than

$ 60 million in economic losses.

01: contract MyWallet{

02 mapping(asress = > unint256) public balances;
03: function depositFunds() public payable{

04 . balance[ msg. sender] -+ = msg. value;

05: }

06 ; function withdrawFunds (unint256 _money) public{
07: require (balances[ msg. sender] == _money) ;
08. // limit the withdrawal

09 require(msg. sender. call. value(_money) ());

10 y

11.

This is a wallet contract code with a reentrant vulnerability. Its function is
to recharge and withdraw cash. The contract does not take into account the pos-
sibility that the called external user account is a contract account. After the ex-
ternal contract account calls the withdrawal function of the wallet contract, the
withdrawal function runs to the 7th line code, and the wallet contract is trans-
ferred to the external contract account, thereby triggering the callback function
of the external contract. Once the external contract calls the withdrawal func-
tion of the wallet contract again, because the intermediate data of the user asset
has not been updated, the second transfer operation can still be triggered. An
attacker can use this vulnerability to transfer all of the Ethereum assets owned
by the contract. Therefore,the reentry vulnerability is to repeatedly call the at-
tack contract recursively, and then recursively call the vulnerability function of
the vulnerability contract through the attack contract.

By analyzing the syntax tree of the reentrant vulnerability, we find that the
trigger of the vulnerability is that the function can be repeatedly entered, and
the intermediate variables that the conditional statement depends on are not
changed in time. In the analysis and detection process, Source is defined as an
untrusted input source, Reentrancy Bug is defined as the vulnerability trigger
point, and Sink is the operation of modifying the contract book. According to
the analysis, there are three conditions for the reentry vulnerability to exist: 1)
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There is a transfer operation; 2) The transfer operation is before the modifica-
tion of the contract book; 3) There is no limit to the number of transfers. The
vulnerability feature fields “call”, “callcode”. and “degegatecall” are thus ob-
tained. Since the number of transfers will not be limited if the transfer transac-

tion is initiated in the above several ways.

functionDefinition

function identifier parameterList modifierList block
withdrawFunds ( parameter ) pullalic { statement statement }
typeName identifier simpleStatement simpleStatement
elementar)[TypeName _money expressionStatement expressionStatement
uint256 expression expression
expression ( functionCallArguments ) expression .= expression
e
primaryELpression express[ionList expression [ expression ] primaryELpression
iden[tiﬁer expression primaryExpression expression . identifier identifier
reqlijire expression ( functionCallArguments ) identifier primaryExpression sender _money
expression  ( functionCallArguments ) balances iden[tiﬁer
expression . identifier expressjonList m[sg
expression . identifier value expression
expression . identifier call primaryExpression
primaryExpression  sender identifier
identifier _money
msq

Figure 2 Schematic Diagram of the Minimal Syntax Tree of the Vulnerability Contract

G
(1)
¥

(2)» Reentrancy Bug [——m

Figure 3 Schematic Diagram of the Reentry Data Flow Model

As shown in Table 4, by analyzing a large number of smart contract codes,

we summarized the features of 11 kinds of vulnerabilities such as reentrant vul-
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nerability.
Table 4 Smart Contract Vulnerability Features Library

Vulnerability type Vulnerability feature
Reentrant Vulnerability call, callcode , degegatecall
Numeric Overflow Vulnerability +.—, % ,/,int,uint
Time Dependent Vulnerability now, block. timestamp

now,  block. timestamp, tx. gasprice,  msg. gas,
Random Number

block. number, block. hash, sha256, sha3,

Generation Vulnerability ]
ripemd160, ecrecover

Self-destructive Vulnerability suicide, selfdestruct
PermissionCcontrol Vulnerability tx. orgin,owner

Return Value Judgment ] )
. Send and other functions whose return value is boolean
Vulnerability

Code Execution Vulnerability delegatecall
Denial of Service Vulnerability transfer, send
Variable Coverage Vulnerability Same variable name, function name

2 Evaluation

In order to fully test the performance of the proposed smart contractvulner-
ability detection method, we chose two different data sets. The first data set is
the most active 15394 contract addresses in Ethereum as of April 2019. Ethere-
um Scan is able to perform a search and verification of the verified contract.
This paper analyzes the contract code of the publicly available 15394 contract ad-
dresses. These contracts are all still in operation and have been analyzed to in-
clude a total of 75,799 contracts.

We design the following experiments to verify the results and performance:
1) Verify the test results on the Ethereum contract; 2) Compare this test meth-
od with other test tools; 3) Evaluate the non-functional test results of the meth-

od. The test environment is shown in Table. 5.

261



B+ TRESZERBESITENEITMAARS (VARA2019) b &

Table S Experimental Environment

CcruU Intel(R) Core(TM) i7-8550U CPU @ 1. 80GHz
Memory 4096 MB

Docker Docker version 18. 06. 1-ce, build e68fc7a
Ubuntu Linux ubuntu 4. 4. 0-31-generic # 50~14. 04. 1-Ubuntu
Python Python 3.6. 1

Java java version “1.8.0_131”

Php 5.4.45

Sole 4.0.25

Geth 1. 8. 17-stable-8bbe7207

Truffle Truffle v4. 1. 14

Remix 1.01

Node-js v0. 10. 25

2.1 Detection Performance

In the evaluation process of vulnerability detection, several standards for e-
valuating the performance of vulnerability detection methods are mainly re-
ferred, which include Accuracy (ACC), false positive rate (FPR). The specific
contents of these indicators are as follows:

Accuracy (ACC): the percentage of the number of vulnerabilities correctly
detected by the vulnerability detection method in the true number of vulnerabili-
ties in thesmart contract source code.

Falsepositive rate (FPR) : the percentage of vulnerabilities detected by vul-
nerability detection methods that do not actually exist in the program, that is,
the percentage of the number of system error reports in the total number of re-
ports;

The test results of the method are verified by the combination of manual a-
nalysis, and the results are shown in Table 6. On average, one out of every 10
contracts has a vulnerability. Of the 15394 contract addresses, 4772 contract ad-

dresses have vulnerabilities, accounting for approximately 31%.
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Table 6 Test Results of Ethereum Contract Data Set

The proportion of

Number of
Number the  vulnerability
contracts
category of vulnerabili- contracts in the ACC
with vulnera-
ties total number of
bilities
contracts tested
Reentry 10 9 0.06% 83.3%
Numerical overflow 2983 2427 15. 85 % 76.3%
Time-dependent 103 103 0.67% 88%
Self-destruction 23 23 0.15% 70.4%
Permission Control 76 67 0.44% 73.6%
Return Value Judgment 5961 4839 31.59% 75 %
Code Execution 21 18 0.12% 70%
Random Number Generation 189 178 1.16% 60 %
Conditional Competition 256 232 1.51% 78%
Denial of Service 3 3 0.02% 100 %
Variable Coverage 339 315 2.06% 97 %

In this section, the vulnerability detection accuracy rate of this method is
analyzed by manual verification contract. Among them, the key code of a detec-
ted numerical overflow vulnerability is as follows. The code comes from the dig-
ital token RocketCoin®. RocketCoin was created in 2017, and the token value
during the peak period was $ 12. 44.

01: function multiTransfer(address| | _addresses, uint | amounts) public returns (bool

success) {
02 require(addresses. length <= 100
&.8. addresses. length==_amounts. length) ;
03 uint totalAmount;
04 . for (uint a = 0; a << _amounts. length; a-+ +){
05 totalAmount + = _amounts[a];
06: }
07 require(totalAmount > 0 &.&. balances[ msg. sender] >= totalAmount) ;
08 balances[ msg. sender ] — = total Amount;
09. for (uint b = 0; b < _addresses. length; b+ +) {
10 if (_amounts[b] > 0) {
11. balances[ addresses[b]] += _amounts[ b];
12 Transfer(msg. sender, _addressesb], amounts[b]);
13 }
14 }

@D  https://etherscan. io/token/0x6fc9¢c554c2363805673f18b3a2b1912cce8bfb8a
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In this function, totalAmount refers to the total transfer amount, and _a-
mounts represents an array of amounts for each recipient’s separate transfer.
The method proposed in this paper detects a numerical overflow vulnerability in
line 5 of the code. The contract code does not check that the sum of the total
transfer amount and the current transfer amount must be greater than the value
of either one. During the manual verification process, we created a virtual
Ethereum node and re-registered two test account addresses.

The test account address created by the node:

1)“0x2360114bef2b0bb8d5dc3a506599f19506c76{{5”,

2)%0x3612c9bdb7b15727145d35d619ef233514c0277d”,

After the contract with the vulnerability is successfully deployed in the vir-
tual node using the first account, the second account is used to launch the attack
in the previous way, and the second account successfully adds a large number of

digital tokens. The vulnerability is verified successfully.
2.2 Detection of CVE Vulnerabilities

To further illustrate the detection capabilities of this method, we detect
vulnerability code that has become a security event and vulnerability code that
has a CVE number. We test more than ten vulnerability codes with CVE num-
bers. Table 7 lists the results of some CVE tests, demonstrating the ability of

this method to detect contract vulnerabilities.

Table 7 Test Results of CVE Vulnerabilities

Token name Vulnerability type CVE number Public time Results
DAOToken Reentry — 2016. 06 Successful
BECH Numerical Overflow CVE-2018-10299 2018. 04 Successful
BTCR"™! Numerical Overflow CVE-2018-11687 2018. 05 Successful
PKT"! Numerical Overflow CVE-2018-11809 2018. 06 Successful
RMCH Numerical Overflow CVE-2018-12230 2018. 06 Successful
CryptoFlower"  Numerical Overflow CVE-2018-13525 2018. 07 Successful

2.3 Comparison withRelated Approaches

The data set used in the comparison test is the Ethereine real contract data
set in the previous section, comparing the averageaccuracy rate and false positive
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rate of several tools, include Oyente'?’, Mythril™*®! and Tencent Smart Contract
Security Detection System.

As shown in Figure. 4, the comparison test results show that our method
has higher accuracy and lowest false positive rate than other tools. In general,
the detection of symbolic execution will result in higher accuracy and a higher
false positive rate. The figure clearly shows that Oyente and Mythril have high-
er false positive rates. Oyente’s accuracy is not high, due to its small number of
vulnerability detection types. TencentDetect has a high rate of false positives
due to lax restrictions. In summary, the false positive rate and accuracy of our
method have reached a good balance, and it is more suitable as an audit assistant

for security personnel analysis.
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Our Method Oyente Mythril Tencent
mACC mFPR

Figure 4 Comparison Test Results

2.4 Run-time Performance

In addition to the functional detection of vulnerability detection methods,
we also focus on non-functional test results. Usually, this test includes the cal-
culation test of time and space resources. The test of space resources is also di-
vided into memory consumption and hard disk space consumption. However, in
the problem of detecting smart contract vulnerability, the loss of hard disk space
is negligible, and the consumption of memory resources is obviously different
due to the implementation method. So here we mainly test the difference in
time. When testing the Ethereum real contract dataset, our method took an av-
erage of 29. 4 seconds to analyze a contract address, and 77 contracts (0.5%)
timed out or could not be resolved. 10, 545 contracts were safe, and about
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68.5% of the contracts did not detect vulnerabilities. Oyente and Mythril re-
quire higher time and higher memory and CPU usage in the same test environ-
ment. However, TencentDetect’s detection speed is the best, and a contract ad-
dress can be detected in less than 10 seconds. This experiment also proves that
our algorithms and detection methods have low time complexity and space com-

plexity, and can complete contract vulnerability detection relatively quickly.

3 Related Work

As a product of the new era, smart contracts will surely become the trend
of future development. It not only provides a variety of financial services, but al-
so brings advantages in legal certification. However, while promoting social
progress, it also faces unprecedented security challenges. Security researchers
are also making unremitting efforts to build a secure and equitable blockchain e-
cosystem.

Delmolinot* disclosed a variety of logical vulnerabilities in a smart contract
built by themselves, including non-return of contract transfers, secret disclo-
sures, and incentive failure. These security issues are caused by logical vulnera-
bilities in the design and implementation of contract.

Hirai""! proposed a formal authentication for smart contract based on Isa-
belle high-order logic interaction theorem prover, which uses Lem language to
define a formal model for EVM virtual machine, and proves the security features
of EVM with existing interactive theorem. The main benefit of this framework
is that they provide strong formal verification and are accurate and without false
positives.

At the same time, in the field of smart contractvulnerability detection, sev-
eral well-known tools have been proposed. Most of these tools use symbolic exe-
cution technology.

Luu® proposed Oyente, which can be used to detect reentry vulnerabilities
or transaction order dependency vulnerabilities. However, the system also has
some shortcomings. For example, it can only detect specific types of vulnerabili-
ties, some of which can only be exploited by malicious miners.

In addition, Mythril"'*, Maian"'®, SECURIFY"") and other systems are al-
so using this idea to carry out work. Maian also adopted a series of verification
measures to reduce false positives.
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Atzei™™ provided an analysis report on the type of attack on the Ethereum
contract. The report assesses the smart contract attacks in recent years and clas-
sifies and summarizes the types of attacks.

In order to further analyze the security vulnerabilities of smart contracts,
Matt Suichel'™ completed a decompilation tool for EVM bytecode.

Zhou"® proposed an inverse tool Erays that can convert EVM binary byte-
code into a high-level language pseudocode. Erays analyzes the information en-
tropy and reuse of contract code and reduces the unknown portion of the undis-
closed contract code by comparing it with published contracts.

21 completed the initial work of converting Solidity and EVM

Bhargavan
bytecode into an existing formal verification system. Unfortunately, their arti-
cles are not analyzed in conjunction with real-world smart contracts.

Kalra"®! proposed a framework called ZEUS to detect security vulnerabili-
ties and user-defined security policies for smart contracts. They compile smart
contracts with user policies into LI.LVM-based intermediate code representations

and then use existing LLVM-IR-based verification tools for further static analy-

sis.

4 Conclusion

This paper uses the static analysis of the contract flowgraph to build a con-
tract model that contains code structure information, control flow information,
function call information and variable transfer information, and data dependency
information. Data flow analysis of the contract model is compared with the vul-
nerability feature data flow model we have summarized to achieve the purpose of
threat detection. Experiments show that the smart contract vulnerability detec-
tion method we designed can achieve a certain detection effect.

However, there are still deficiencies, and further improvements are needed
in the following work: 1) Make the division of the vulnerability type clearer. In
the summary work of the types of smart contract vulnerabilities, in addition to
well-known vulnerabilities in several security incidents, there are no standard-
ized rules for other vulnerabilities. There are 11 different types of smart con-
tract vulnerabilities involved in this article. It is inevitable that some of the de-
tection features of vulnerabilities have intersecting parts. In the future, the
smart contract source code should be studied in more depth, and the type of vul-
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nerability detection and model characteristics will be clearly defined; 2) The
method designed in this paper can only detect the vulnerabilities of data streams
that match the type of vulnerability. It is not good for the conditional vulnera-
bility detection that is triggered by complex data vulnerabilities such as high
concurrency; 3) This paper mainly uses static code analysis audit technology,
which is not implemented in combination with dynamic code execution monito-
ring technology. In the future, we can consider further improving the audit sys-
tem by adding dynamic monitoring technology to improve the accuracy of threat

detection.
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