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Abstract—OS kernels enforce many security checks to validate 
system states. We observe that paths containing security checks 
are in fact very informative in inferring critical semantics in OS 
kernel. In particular, Such slices are valuable for detecting kernel 
semantic bugs because understanding semantics is typically 
required by the detection. However, there are few studies that 
address security checks, and constructing these slices is 
challenging due to not only a lack of clear criteria but also the large 
and complex OS. In this paper, combining security checks with 
program slicing, we first systematically study security check peer 
slices and propose an automatic approach to construct security 
check peer slices in OS kernel. Using an inter-procedural, 
semantic- and context-aware analysis, we can find slices sharing 
similar semantics in similar contexts. Based on the information 
offered by security check peer slices, we then introduce the 
Scenarios for semantic vulnerability detection by security check 
peer slices: missing security check and inaccurate security check. 
The evaluation results show that our approach can accurately 
constructing security check peer slices. 

Keywords—program slicing, security check, static analysis, OS 
kernel, semantic bug 

I. INTRODUCTION 
Operating systems are computer programs that manage 

computer hardware and software resources and are complex and 
large in size, with more than 25 000 000 lines of code in the 
Linux kernel alone. Due to its complex logic, operating systems 
are often subject to errors and other anomalies, such as 
unexpected behavior from software, abnormal input from the 
operator, physical failure of hardware, etc. Security check is the 
most common security enhancement in operating systems, 
which checks the critical variables to confirm the current 
operating state of the system to ensure the system's security. The 
existing security checking mechanism does not perfectly solve 
the problems in the system, and missing[1, 2, 3] or incorrect 
[4]security checking has been a very common situation in 
operating systems, which can lead to malicious code attacks 
(e.g., stack overflow, etc.) or fatal errors (e.g., system crash, etc.) 
in the process of operation[5]. 

Unfortunately, even though the problem of lack of security 
checks is so widespread and serious, there are few research 

projects on security checks because of several inherent 
challenges. (1) System vulnerabilities regarding security checks 
have not received much attention. (2) Operating system source 
code is so large and complex that detailed analysis of the source 
code is an impossible task. (3) There are also few studies for 
identifying exception handling and error codes. To address the 
above three points, we conduct an in-depth study on peer 
semantic slicing of Linux OS security checks, so as to achieve 
accurate detection of kernel semantic vulnerabilities through 
security check slices. 

System software has a large number of variables, and 
important variables (critical variables) are often protected by 
security checks. It is worth noting that critical variables are  also 
passed between procedures, so code snippets with the same 
semantics also need to have  the corresponding security checks 
added, which are often forgotten by developers, leading to the 
missing security check bug. We refer to these program slices 
with similar semantics and context as the security check peer 
slices. For example, line 33 in Figure 1 indicates that the 
function pointer variable write can make indirect calls to 
functions whose call targets change as the control flow changes, 
thus generating multiple peer semantic paths, one of which is 
coalesced_mmio_write with two security checks. Further, we 
can speculate that the coalesced_mmio_write function contains 
four security-checked slices. If peer paths exist, then the slices 
for security checks on the same variable are peer. Our source 
code analysis reveals that the variable last can be controlled by 
the user and thus lines 22-25 can lead to potentially arbitrary 
write. To avoid out-of-bounds access, "within-boundary" should 
be checked for security before the variable last is used. This 
information is valuable for detecting semantic vulnerabilities. 
By constructing security check peer slices, we can inspect 
whether a critical variable has been properly security checked 
before it is used, and also determine whether the security checks 
that already exist are accurate. 

It is worth noting that it is useful to construct security check 
peer slices for fuzzing and system hardening. Fuzzing 
techniques[6] are often inefficient in exploring deep paths due 
to traversing invalid paths[7, 8]. On the other hand, existing 
system hardening techniques such as memory security[9] and 
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fault/memory isolation[10, 11]tend to require very high 
performance expenses. Constructing semantic slices of security 
check peers allows researchers to selectively focus on a few 
targets that need to be protected, thus improving performance. 

 
Figure. 1. Four security check slices (Line 9 and 15). One slice is used for addr, 
one for len and two for dev. 

Although building security check peer slices shows great 
opportunities in detecting dangerous semantic bugs and system 
hardening, etc., it is also a very challenging task. First, 
identifying security checks requires semantic understanding. 
Not all conditional statements are security checks, and only a 
small fraction of them are satisfied. In order to improve the 
accuracy of semantic program slices, false positives and false 
negatives of identifying security checks need to be reduced. In 
addition, in terms of code slicing, existing slicing methods are 
code decomposition-based in nature, while bug discovery-
oriented slicing wants to reflect the context of bugs from input 
to defect triggering. therefore, suitable slicing models and 
algorithms expressing vulnerability need to be established. 
Finally, the operating system kernel is extremely large and 
complex. Program semantic analysis of it is very challenging, 
and corner cases such as hand-written assembly make the 
analysis results error-prone. 

In this paper, we aim to automate the construction of security 
check peer slices in complex and large operating system kernels, 
and introduce scenarios where these slices are used to detect 
some common and critical kernel semantic bugs. In order to 
address the previously mentioned challenges and effectively 
detect kernel semantic vulnerabilities, we first complete a study 
of security-checking peer slicing to better understand its 
properties. Based on this study, we further introduce the 
application scenarios of security check peer slices in 
vulnerability detection. 

We make some contributions in this paper as follows. 

- A study of security check peer slices. We conduct a study 
of security check peer slices to find intrinsic differences between 

security check peer slices and normal code paths, and to discover 
the semantic relationships between security check slices. 

- Automatic construction of security check peer slices. 
We propose an automatic approach to construct security check 
peer slices in OS kernel. The approach incorporates multiple 
techniques such as identifying extensively security checks and 
identifying targets of indirect call. 

- Scenarios for semantic vulnerability detection. We 
present scenarios of security check peer slices for vulnerability 
detection: missing security check bugs, inaccurate security 
check bugs. In addition, we then present scenarios of its 
application in code auditing. 

II. BACKGROUND 

A. Serious Security Impact 
Security checks are a class of conditional statements that can 

be used to verify the execution status of a program. As we know, 
the detection of security checks is of great significance for 
vulnerability discovery and vulnerability exploitation, and the 
lack of security checks or incomplete security checks in 
operating systems may cause very serious consequences, even 
leading to system crashes. As the most important indicator for 
detecting security check vulnerabilities, the security check slice 
is also crucial to system security. 

In order to investigate the significant impact of security 
checks, we conducted additional research based on the literature 
[3] in the following areas: (1) How many security bugs are 
caused by the lack of security checks, (2) The serious security 
impact of these security vulnerabilities. 

In response to the first question, we surveyed 300 randomly 
selected security vulnerabilities from 2017 to 2019 in the U.S. 
NVD[12]. Among these vulnerabilities, we selected 
vulnerabilities that were fixed by adding security checks as 
missing security check vulnerabilities. The statistical results 
show that a total of 184 vulnerabilities are about security check 
vulnerabilities. In 2017 and 2018, the majority (59.5%) of the 
security vulnerabilities were related to missing security checks, 
while in 2019, the percentage was as high as 65%. 

To address the second issue, we learned from our survey that 
11 of the most serious vulnerabilities from 2017 to 2019, i.e., 
those with a CVSS score of 10 (the highest severity level), were 
caused by a lack of security checks. According to our statistics, 
in 2019, among the 65 security check vulnerabilities obtained 
from our sample, 7 vulnerabilities were identified as Critical and 
28 as High in CVSS, which means that about 53.9% of the 
missing security check vulnerabilities are more serious. 

B. Lack of Relevant Research 
Little research has been done on security check slices. To the 

best of our knowledge, this area of research is mainly 
represented in Kangjie Lu's CRIX[3], which improves the error 
code identification method mentioned in LRSan[13] by using 
both error codes and exception handling functions as the 
benchmark for identification, thus identifying more security 
checks and critical variables, and finally performing forward and 
backward data flow analysis on the critical variables to find all 
the security check slices. However, we find that the slices 
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mentioned in CRIX are all terminated by conditional statements 
or path endings, which causes a large number of false positives 
and inaccurate semantic identification. For example, as shown 
in Figure 2, CRIX does not include check functions in the end 
identifiers and thinks hcd_pci_suspend_noirq does not do a 
security check on dev, but check_root_hub_suspended called in 
hcd_pci_suspend_noirq  have done it. It is thus clear that slices 
that end only with conditional statements or path endings are 
imperfect. Even though this approach suffers from certain false 
positives and false negatives, it still provides very much support 
for security check-based vulnerability detection. 

As the cornerstone of security check-based vulnerability 
detection, the more accurate the security check slices are 
identified, the better their detection results will be, and the lack 
of existing work, in terms of for slice construction, is the biggest 
motivation for our research. In III, we give a definition of the 
security check peer slice. 

 
Figure. 2. An example of a security check function 

C. Slice Conception 
This section describes some terms and concepts about 

program slice. The process of removing irrelevant statements 
from a program and thus reducing the complexity of program 
analysis is called program slicing. In other words, a slice is a 
miniature version of a source code program. According to 
Weiser, a static slice is a collection of statements that can 
directly or indirectly affect the values of variables in a given 
program point, which is called a slicing criterion[14]. This 
slicing criterion is denoted as (S,V), where S is the statement or 
line number and V is the variable in the program. The feedback 
using program slicing in many applications is not satisfactory. 
This is because in many scenarios the size of the slices obtained 
is not significantly smaller than the original program. For large 
programs, a single slice may contain dozens or even hundreds of 
program instructions and miss program semantics. Similarly, in 
security check scenarios, the size of security check slices 

obtained can also be large, as well as the association between 
instructions in the slices is not clear. To eliminate this drawback, 
we introduce security check peer slices to reduce the size of 
slices and improve program semantics. 

III. A STUDY OF SECURITY CHECK PEER SLICES 
There are a large number of security check statements in the 

operating system kernel. Before a critical variable is used, the 
system often checks it for security to ensure system stability. 
Due to the call relationship between functions, there are many 
paths with similar semantics and contexts. In the 
coalesced_mmio_write function shown in Figure 1, different 
arguments and different parameter fields can lead to different 
paths. The security check at line 15 corresponds to the example 
where the argument this is the same as its parameter field, as it 
performs a security check on this. In order to better understand 
the security check peer slices, we need to give a definition of 
security check peer slices. For this purpose, we have 
investigated some ground-truth security checks. There are many 
OS bugs that are fixed by inserting a security check, and the 
check is often on the variable being used or its fields. We have 
collected 40 security checks from previous papers[2, 15]. In 
addition, 50 were collected from the Linux kernel's git patch 
history. Based on the intrinsic features of the security checks, we 
provide the definition of security check peer slices.  

A. Definition of Security Check Peer Slice 
 We first give a definition of security check peer slice based 

on the intrinsic features of security check[16] and our above 
investigation. We know that security check is adding conditional 
constraints to critical variables, so the target of the security 
check peer slice is critical variables. Let the critical variable be 
CV. φ(CV) denotes the field set of CV. φ(CV)i, where i is an 
integer index, represents the “ith” field of CV. The head of the 
slice is S, and E denotes the end of the slice, so then the security 
check slice denotes the set of statements starting with S and 
ending with E. We then identify the statement set as a security 
check slice if the statement where S or E is located belongs to 
the set which includes security check conditional statement SC, 
security check function SCF, and other statement containing CV, 
where SC or SCF makes security check on CV or φ(CV)i. 

 If two such security check slices have the same semantics 
and context, then we call them peer semantic and peer context. 
In other words, the construction of security check peer slices 
relies heavily on the selection of slicing criterion. An effective 
and practical slicing criterion can avoid the path explosion 
problem[17] and yet ensure that our slices are peer-to-peer. 
Therefore, a good slicing criterion is crucial to reduce the false 
positive rates, which will be described in the next section. 

B. Slicing Criterions 
In this section, we study some slicing criterions for 

generating peer paths. seemingly, we can perform forward 
slicing and backward slicing for each critical variable to find all 
the security check peer slices. Such a naive approach is prone to 
high time overhead and high false positive rates. To solve these 
problems, we must construct peer slices for the source and use 
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of critical variables. For program control flow graphs, call 
instructions and return instructions tend to generate peer paths. 
Therefore, we summarize three semantic slicing criterions. 

 Criterion-1(n1, CV): CV represents the critical variable 
required for slicing, and n1 denotes the program point where the 
function with CV as an argument is indirectly called. As shown 
in the example in Figure 4, the indirect call dev->ops-> write() 
is equivalent to a dispatcher, which is called against functions 
that share similar semantics, such as coalesced_mmio_write in 
Figure 1 and ioeventfd_write in eventfd.c[18]. These callees take 
arguments from the same caller, so they also have similar 
contexts. 

 
Figure. 4. An example of a function pointer as a field of a struct 

 Criterion-2(n2, CV): CV also represents the critical variable 
required for slicing, and n 2  represents the program point where 
the function is called with CV as the return value or output 
argument. If a function callee returns a critical variable or uses 
a critical variable to assign an output argument, then the 
functions calling the callee share similar semantics. The return 
values of the callers all come from the same callee, so they also 
share  similar contexts. 

Criterion-3(n3, CV): CV represents the critical variable 
required for slicing, and  n3 represents the program point where 
the function with CV as the parameter is called. When the critical 
variable comes from an argument to the current function callee, 
the functions calling the callee share similar semantics. The 
arguments of callers are all passed to the same callee, then they 
also are used as similar semantics in similar contexts. 

IV. EXPERIMENTAL EVALUATION 
We implement an experimental tool, SCSlicer[19], using 

the above research. Then, we collect some results related to 
security check slices to extensively evaluate the scalability and 
effectiveness of SCSlicer using the Linux kernel. 

A. SCSlicer: Security Check Peer Slicer 
Based on the study in III, we implement a security check 

peer slicing tool, SCSlicer. Figure 3 illustrates the workflow of 
SCSlicer. Since the identification of security checks relies on 
precise exception handling functions, the first step of SCSlicer 
is to identify a more comprehensive set of exception handling 

functions. Based on exception handling functions and error 
codes, SCSlicer extends the security check identification 
algorithm mentioned in [14] to generate sets of security check 
conditional statements and security check functions. With the 
sets, our second step is to identify indirect call targets to 
construct an accurate call graph, thus identifying the source and 
use of critical variables. We find the target of an indirect call by 
matching the number and type of arguments of a function 
pointer, for which an assignment relationship exists, with the 
target function. Finally, we construct security check peer slices 
using the three slicing criterions described in III.B.. 

B. Evaluating the Constructing of Security Check Peer Slices 
In this section, we extensively evaluate SCSlicer using 

Linux Kernel of version 5.5-rc7 with the top git commit number 
def9d2780727cec. The experimental environment is conducted 
on an Ubuntu 16.04 LTS system with LLVM 10.0. We use   
wllvm[20] to generate a 452M LLVM IR bytecode file to cover 
more modules. 

Statistical results. Before presenting the evaluation results, 
we first show some interesting statistical results, as shown in 
TABLE 1. With the cloc[21] tool, the evaluation experiment 
covers 18.8 million lines of Linux kernel code. For Linux, 
SCSlicer identified 46.1K security checks, which are security 
check conditional statements (97.3%) and security check 
functions (2.7%). SCSlicer identified 172.9K security check 
slices using the three slicing criteria defined above, and a total 
of 9.5K security check peer semantic slices. The 822 security 
check peer slices are identified by indirect call scenarios.  
SCSlicer found most security check peer slices (65.5%) in SC-
3 scenario. Since we added the security check functions to 
security checks, SCSlicer builds more security-checking peer 
slices than CRIX. SCSlicer finds more security check slices and 
security check peer slices. If we use SCSlicer to audit the Linux 
kernel, we can find more kernel semantic bugs. 

False negatives. SCSlicer constructed security check peer 
slices via the three slicing criterions. SCSlicer may have false 
negatives if not all slicing criterions are covered. However, 
other slicing criterions are difficult to solve program semantic 
problems because they are not easily semantic- and context-
aware. 

False positives. SCSlicer found 9.5K security check peer 
slices, however CRIX identified 5.4K. To evaluate false 
positive, we randomly selected 500 slices reported by the two 
tools for Linux kernel, and confirmed whether they are real 
security check peer slices based on the definition described in 
III. The results show that 467 of them are true positives.  

Figure. 3. The workflow of SCSlicer. SCSlicer takes as input the kernel source code and some basic exception handling functions to automate the construction of 
security check peer slices 
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TABLE 1: SOME STATISTICAL NUMBERS RELATED TO SECURITY CHECK SLICES 

Tool 
Security checks Security 

check 
slices 

Security check 
peer slices 

Through 
SC-1 

Through 
SC-2 

Through 
SC-3 Conditional 

statements Functions 

CRIX 42.6K 0 116.2K 5.4K 709 1463 3254 
SCSlicer 44.9K 1.2K 172.9K 9.5K 822 2464 6235 

Scalability. The experiments were performed on an Ubuntu 
16.04 LTS system with LLVM version 10.0 installed. The 
machine has a 8 GB RAM and an Intel CPU (Core™ i5-8265U 
1.6GHz) with 8 cores. SCSlicer is faster than CRIX it finished 
the whole analysis for Linux within 10 minutes: three minutes 
are for loading bitcode files and identifying security checks, and 
seven minutes is for constructing security check peer slices. 

V. APPLICATION OF SECURITY CHECK PEER SLICES 
Security check peer slices are very informative in revealing 

critical semantics. With them, a bug related to security check is 
more likely to be detected or triggered. Without such 
information, a bug detected by previous approaches[1, 2, 3, 4, 
16, 22, 23] may not be critical at all or is a false positive. Also, 
we may find other unchecked variables on the security check 
slices. 

In this section, we will present how to use these slices to 
effectively detect critical kernel semantic bugs: missing security 
check bugs and inaccurate security check bugs. In addition, we 
combine security check peer slices and code auditing technology 
to help auditors find common vulnerabilities in source code 
more quickly. 

A. Detecting Critical Kernel Semantic Bugs 
In this section, we will present how to use security check 

peer slices to effectively detect critical kernel semantic bugs 
involving missing security checks and inaccurate security 
checks. 

Missing security checks. Missing security checks is a class 
of semantic bugs in software programs where erroneous 
execution states are not validated. We construct three different 
peer slices by using the targets of security check statements as a 
starting point and finding their source and use through taint 
forward and backward analysis. Using these peer semantic slices, 
we can detect missing security check bugs by implementing the 
following steps: (1) identifying security checks in peer semantic 
slices and modeling constraints on critical variables; (2) finding 
peer slices that do not do security checks on critical variables; 
and (3) calculating the proportion of slices with missing security 
check statements among all peer semantic slices to generate 
bugs detection reports. 

Inaccurate security checks. There are a large number of 
security checks in the Linux kernel source code, but the accuracy 
of the security checks is often disputed. Inaccurate security 
checks can lead to serious security impacts. Inaccurate security 
check bugs focus on correcting security checks to prevent 
vulnerabilities such as some buffer overflows, as opposed to 
security check missing bugs. Similar to detecting missing 
security checks, we identify all security checks in peer semantic 

slices containing security checks and model constraints on 
critical variables. Then, we also calculate the proportion of 
constraints in a class of security check slices containing security 
check for the same critical variable. Finally, we believe that the 
constraint that appears most often is the correct security check. 

VI. DISCUSSION 
In this section, we discuss limitations of SCSlicer that can be 

potentially improved and explored as future work directions. 

Slicing criterions. There are a wide variety of security check 
slices within the kernel. According to call instructions and return 
instructions tending to generate peer paths, SCSlicer 
summarizes three slicing criterions. However, in addition to 
criterion 1-3, whether there are other criterions is also a question 
worthy of discussion. An improved model can include as many 
slicing criterions as possible, to make the SCSlicer more 
complete. 

Bugs Detection. Critical kernel semantic bugs are detected 
by cross-checking security check slices. We can set the 
threshold to a proper value to minimize the false positives at the 
cost of completeness. The specific vulnerabilities found through 
the use of this tool are our next step to do. Similarly, the method 
proposed in this paper can be used to detect bugs in other 
software other than the kernel. However, it may have lots of 
false positives for smaller target programs because they do not 
have enough security check peer slices. 

VII. RELATED WORK 
To the best of our knowledge, SCSlicer is the first 

systematically to construct security check peer slices. We 
identify two research lines that are related to SCSlicer: error 
handling analysis and missing-check detection. 

Error handling analysis. Several efforts have attempted to 
analysis error handling. EIO[24] presents an approach that uses 
data-flow analysis to detect unchecked errors in the file system 
code. Cheq[16] locates security checks and error handling 
functions in the kernel by searching certain patterns and uses this 
information to detect bugs. EPEx[25] and APEx[26] identify 
code paths in a callee function that may return error codes and 
check if  the error codes are handled in callers. Hector[27] 
targets the properties of error-handling code to detect resource-
release bugs. 

Missing-check detection. LRSan[13] detects lacking-
recheck bugs, a subclass of missing-check bugs. It however uses 
only standard error codes without considering custom error 
codes and error-handling functions. With our tool SCSlicer, We 
can detect general missing-check bugs and inaccurate-check 
bugs that include lacking-recheck bugs. Crix[3] cross-checks a 
property and uses statistical analysis to detect missing-check 
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bugs, but constructs less peer slices compared with SCSlicer for 
security check functions are not considered; It cannot detect 
inaccurate-check bugs because the cross-checking target is all 
peer slices. Utilizing cross-checking between existing 
implementations of file systems, Juxta[2] detect semantic bugs 
such as missing-check bugs. SCSlicer can analyze all 
subsystems in the Linux kernel. There are also a few other 
complementary approaches to detect missing-check. Chucky[1] 
uses check deviations to infer missing check. MACE[28] is an 
annotation based on static analysis framework and it can find 
missing authorization checks in web applications. Pex [4] uses 
implicit programming rules to find missing, inconsistent, and 
redundant permission checks. 

VIII. CONCLUSION 
 We presented our study on security check peer slices and 
designed an automated experimental tool, SCSlicer, for 
precisely constructing security check peer slices in OS kernel. 
The Construction is semantic- and context-aware with an inter-
procedural data flow analysis. In addition, to find common 
vulnerabilities more quickly, we introduce the Scenarios for 
semantic vulnerability detection by security check peer slices: 
missing security check and inaccurate security check. We 
believe that construction of security check peer slices could 
facilitate future research on the semantic bug detection. 
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