

Automatically Constructing Peer Slices via Semantic-
and Context-Aware Security Checks in the Linux

Kernel

Yongzhi Liu
School of Software and

Microelectronics
Peking University

Beijing, China
lyz_cs@pku.edu.cn

Xiarun Chen
School of Software and

Microelectronics
Peking University

Beijing, China
xiar_c@pku.edu.cn

Zhou Yang
School of Software and

Microelectronics
Peking University

Beijing, China
yzss2019@pku.edu.cn

Weiping Wen
School of Software and

Microelectronics
Peking University

Beijing, China
weipingwen@ss.pku.edu.cn

Abstract—OS kernels enforce many security checks to validate
system states. We observe that paths containing security checks
are in fact very informative in inferring critical semantics in OS
kernel. In particular, Such slices are valuable for detecting kernel
semantic bugs because understanding semantics is typically
required by the detection. However, there are few studies that
address security checks, and constructing these slices is
challenging due to not only a lack of clear criteria but also the large
and complex OS. In this paper, combining security checks with
program slicing, we first systematically study security check peer
slices and propose an automatic approach to construct security
check peer slices in OS kernel. Using an inter-procedural,
semantic- and context-aware analysis, we can find slices sharing
similar semantics in similar contexts. Based on the information
offered by security check peer slices, we then introduce the
Scenarios for semantic vulnerability detection by security check
peer slices: missing security check and inaccurate security check.
The evaluation results show that our approach can accurately
constructing security check peer slices.

Keywords—program slicing, security check, static analysis, OS
kernel, semantic bug

I. INTRODUCTION
Operating systems are computer programs that manage

computer hardware and software resources and are complex and
large in size, with more than 25 000 000 lines of code in the
Linux kernel alone. Due to its complex logic, operating systems
are often subject to errors and other anomalies, such as
unexpected behavior from software, abnormal input from the
operator, physical failure of hardware, etc. Security check is the
most common security enhancement in operating systems,
which checks the critical variables to confirm the current
operating state of the system to ensure the system's security. The
existing security checking mechanism does not perfectly solve
the problems in the system, and missing[1, 2, 3] or incorrect
[4]security checking has been a very common situation in
operating systems, which can lead to malicious code attacks
(e.g., stack overflow, etc.) or fatal errors (e.g., system crash, etc.)
in the process of operation[5].

Unfortunately, even though the problem of lack of security
checks is so widespread and serious, there are few research

projects on security checks because of several inherent
challenges. (1) System vulnerabilities regarding security checks
have not received much attention. (2) Operating system source
code is so large and complex that detailed analysis of the source
code is an impossible task. (3) There are also few studies for
identifying exception handling and error codes. To address the
above three points, we conduct an in-depth study on peer
semantic slicing of Linux OS security checks, so as to achieve
accurate detection of kernel semantic vulnerabilities through
security check slices.

System software has a large number of variables, and
important variables (critical variables) are often protected by
security checks. It is worth noting that critical variables are also
passed between procedures, so code snippets with the same
semantics also need to have the corresponding security checks
added, which are often forgotten by developers, leading to the
missing security check bug. We refer to these program slices
with similar semantics and context as the security check peer
slices. For example, line 33 in Figure 1 indicates that the
function pointer variable write can make indirect calls to
functions whose call targets change as the control flow changes,
thus generating multiple peer semantic paths, one of which is
coalesced_mmio_write with two security checks. Further, we
can speculate that the coalesced_mmio_write function contains
four security-checked slices. If peer paths exist, then the slices
for security checks on the same variable are peer. Our source
code analysis reveals that the variable last can be controlled by
the user and thus lines 22-25 can lead to potentially arbitrary
write. To avoid out-of-bounds access, "within-boundary" should
be checked for security before the variable last is used. This
information is valuable for detecting semantic vulnerabilities.
By constructing security check peer slices, we can inspect
whether a critical variable has been properly security checked
before it is used, and also determine whether the security checks
that already exist are accurate.

It is worth noting that it is useful to construct security check
peer slices for fuzzing and system hardening. Fuzzing
techniques[6] are often inefficient in exploring deep paths due
to traversing invalid paths[7, 8]. On the other hand, existing
system hardening techniques such as memory security[9] and

108

2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)

978-1-6654-3950-3/21/$31.00 ©2021 IEEE
DOI 10.1109/DSN-W52860.2021.00028

20
21

 5
1s

t A
nn

ua
l I

EE
E/

IF
IP

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

ep
en

da
bl

e
Sy

st
em

s a
nd

 N
et

w
or

ks
 W

or
ks

ho
ps

 (D
SN

-W
) |

 9
78

-1
-6

65
4-

39
50

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

SN
-W

52
86

0.
20

21
.0

00
28

Authorized licensed use limited to: Peking University. Downloaded on September 28,2021 at 08:22:26 UTC from IEEE Xplore. Restrictions apply.

fault/memory isolation[10, 11]tend to require very high
performance expenses. Constructing semantic slices of security
check peers allows researchers to selectively focus on a few
targets that need to be protected, thus improving performance.

Figure. 1. Four security check slices (Line 9 and 15). One slice is used for addr,
one for len and two for dev.

Although building security check peer slices shows great
opportunities in detecting dangerous semantic bugs and system
hardening, etc., it is also a very challenging task. First,
identifying security checks requires semantic understanding.
Not all conditional statements are security checks, and only a
small fraction of them are satisfied. In order to improve the
accuracy of semantic program slices, false positives and false
negatives of identifying security checks need to be reduced. In
addition, in terms of code slicing, existing slicing methods are
code decomposition-based in nature, while bug discovery-
oriented slicing wants to reflect the context of bugs from input
to defect triggering. therefore, suitable slicing models and
algorithms expressing vulnerability need to be established.
Finally, the operating system kernel is extremely large and
complex. Program semantic analysis of it is very challenging,
and corner cases such as hand-written assembly make the
analysis results error-prone.

In this paper, we aim to automate the construction of security
check peer slices in complex and large operating system kernels,
and introduce scenarios where these slices are used to detect
some common and critical kernel semantic bugs. In order to
address the previously mentioned challenges and effectively
detect kernel semantic vulnerabilities, we first complete a study
of security-checking peer slicing to better understand its
properties. Based on this study, we further introduce the
application scenarios of security check peer slices in
vulnerability detection.

We make some contributions in this paper as follows.

- A study of security check peer slices. We conduct a study
of security check peer slices to find intrinsic differences between

security check peer slices and normal code paths, and to discover
the semantic relationships between security check slices.

- Automatic construction of security check peer slices.
We propose an automatic approach to construct security check
peer slices in OS kernel. The approach incorporates multiple
techniques such as identifying extensively security checks and
identifying targets of indirect call.

- Scenarios for semantic vulnerability detection. We
present scenarios of security check peer slices for vulnerability
detection: missing security check bugs, inaccurate security
check bugs. In addition, we then present scenarios of its
application in code auditing.

II. BACKGROUND

A. Serious Security Impact
Security checks are a class of conditional statements that can

be used to verify the execution status of a program. As we know,
the detection of security checks is of great significance for
vulnerability discovery and vulnerability exploitation, and the
lack of security checks or incomplete security checks in
operating systems may cause very serious consequences, even
leading to system crashes. As the most important indicator for
detecting security check vulnerabilities, the security check slice
is also crucial to system security.

In order to investigate the significant impact of security
checks, we conducted additional research based on the literature
[3] in the following areas: (1) How many security bugs are
caused by the lack of security checks, (2) The serious security
impact of these security vulnerabilities.

In response to the first question, we surveyed 300 randomly
selected security vulnerabilities from 2017 to 2019 in the U.S.
NVD[12]. Among these vulnerabilities, we selected
vulnerabilities that were fixed by adding security checks as
missing security check vulnerabilities. The statistical results
show that a total of 184 vulnerabilities are about security check
vulnerabilities. In 2017 and 2018, the majority (59.5%) of the
security vulnerabilities were related to missing security checks,
while in 2019, the percentage was as high as 65%.

To address the second issue, we learned from our survey that
11 of the most serious vulnerabilities from 2017 to 2019, i.e.,
those with a CVSS score of 10 (the highest severity level), were
caused by a lack of security checks. According to our statistics,
in 2019, among the 65 security check vulnerabilities obtained
from our sample, 7 vulnerabilities were identified as Critical and
28 as High in CVSS, which means that about 53.9% of the
missing security check vulnerabilities are more serious.

B. Lack of Relevant Research
Little research has been done on security check slices. To the

best of our knowledge, this area of research is mainly
represented in Kangjie Lu's CRIX[3], which improves the error
code identification method mentioned in LRSan[13] by using
both error codes and exception handling functions as the
benchmark for identification, thus identifying more security
checks and critical variables, and finally performing forward and
backward data flow analysis on the critical variables to find all
the security check slices. However, we find that the slices

109

Authorized licensed use limited to: Peking University. Downloaded on September 28,2021 at 08:22:26 UTC from IEEE Xplore. Restrictions apply.

mentioned in CRIX are all terminated by conditional statements
or path endings, which causes a large number of false positives
and inaccurate semantic identification. For example, as shown
in Figure 2, CRIX does not include check functions in the end
identifiers and thinks hcd_pci_suspend_noirq does not do a
security check on dev, but check_root_hub_suspended called in
hcd_pci_suspend_noirq have done it. It is thus clear that slices
that end only with conditional statements or path endings are
imperfect. Even though this approach suffers from certain false
positives and false negatives, it still provides very much support
for security check-based vulnerability detection.

As the cornerstone of security check-based vulnerability
detection, the more accurate the security check slices are
identified, the better their detection results will be, and the lack
of existing work, in terms of for slice construction, is the biggest
motivation for our research. In III, we give a definition of the
security check peer slice.

Figure. 2. An example of a security check function

C. Slice Conception
This section describes some terms and concepts about

program slice. The process of removing irrelevant statements
from a program and thus reducing the complexity of program
analysis is called program slicing. In other words, a slice is a
miniature version of a source code program. According to
Weiser, a static slice is a collection of statements that can
directly or indirectly affect the values of variables in a given
program point, which is called a slicing criterion[14]. This
slicing criterion is denoted as (S,V), where S is the statement or
line number and V is the variable in the program. The feedback
using program slicing in many applications is not satisfactory.
This is because in many scenarios the size of the slices obtained
is not significantly smaller than the original program. For large
programs, a single slice may contain dozens or even hundreds of
program instructions and miss program semantics. Similarly, in
security check scenarios, the size of security check slices

obtained can also be large, as well as the association between
instructions in the slices is not clear. To eliminate this drawback,
we introduce security check peer slices to reduce the size of
slices and improve program semantics.

III. A STUDY OF SECURITY CHECK PEER SLICES
There are a large number of security check statements in the

operating system kernel. Before a critical variable is used, the
system often checks it for security to ensure system stability.
Due to the call relationship between functions, there are many
paths with similar semantics and contexts. In the
coalesced_mmio_write function shown in Figure 1, different
arguments and different parameter fields can lead to different
paths. The security check at line 15 corresponds to the example
where the argument this is the same as its parameter field, as it
performs a security check on this. In order to better understand
the security check peer slices, we need to give a definition of
security check peer slices. For this purpose, we have
investigated some ground-truth security checks. There are many
OS bugs that are fixed by inserting a security check, and the
check is often on the variable being used or its fields. We have
collected 40 security checks from previous papers[2, 15]. In
addition, 50 were collected from the Linux kernel's git patch
history. Based on the intrinsic features of the security checks, we
provide the definition of security check peer slices.

A. Definition of Security Check Peer Slice
 We first give a definition of security check peer slice based

on the intrinsic features of security check[16] and our above
investigation. We know that security check is adding conditional
constraints to critical variables, so the target of the security
check peer slice is critical variables. Let the critical variable be
CV. φ(CV) denotes the field set of CV. φ(CV)i, where i is an
integer index, represents the “ith” field of CV. The head of the
slice is S, and E denotes the end of the slice, so then the security
check slice denotes the set of statements starting with S and
ending with E. We then identify the statement set as a security
check slice if the statement where S or E is located belongs to
the set which includes security check conditional statement SC,
security check function SCF, and other statement containing CV,
where SC or SCF makes security check on CV or φ(CV)i.

 If two such security check slices have the same semantics
and context, then we call them peer semantic and peer context.
In other words, the construction of security check peer slices
relies heavily on the selection of slicing criterion. An effective
and practical slicing criterion can avoid the path explosion
problem[17] and yet ensure that our slices are peer-to-peer.
Therefore, a good slicing criterion is crucial to reduce the false
positive rates, which will be described in the next section.

B. Slicing Criterions
In this section, we study some slicing criterions for

generating peer paths. seemingly, we can perform forward
slicing and backward slicing for each critical variable to find all
the security check peer slices. Such a naive approach is prone to
high time overhead and high false positive rates. To solve these
problems, we must construct peer slices for the source and use

110

Authorized licensed use limited to: Peking University. Downloaded on September 28,2021 at 08:22:26 UTC from IEEE Xplore. Restrictions apply.

of critical variables. For program control flow graphs, call
instructions and return instructions tend to generate peer paths.
Therefore, we summarize three semantic slicing criterions.

 Criterion-1(n1, CV): CV represents the critical variable
required for slicing, and n1 denotes the program point where the
function with CV as an argument is indirectly called. As shown
in the example in Figure 4, the indirect call dev->ops-> write()
is equivalent to a dispatcher, which is called against functions
that share similar semantics, such as coalesced_mmio_write in
Figure 1 and ioeventfd_write in eventfd.c[18]. These callees take
arguments from the same caller, so they also have similar
contexts.

Figure. 4. An example of a function pointer as a field of a struct

 Criterion-2(n2, CV): CV also represents the critical variable
required for slicing, and n 2 represents the program point where
the function is called with CV as the return value or output
argument. If a function callee returns a critical variable or uses
a critical variable to assign an output argument, then the
functions calling the callee share similar semantics. The return
values of the callers all come from the same callee, so they also
share similar contexts.

Criterion-3(n3, CV): CV represents the critical variable
required for slicing, and n3 represents the program point where
the function with CV as the parameter is called. When the critical
variable comes from an argument to the current function callee,
the functions calling the callee share similar semantics. The
arguments of callers are all passed to the same callee, then they
also are used as similar semantics in similar contexts.

IV. EXPERIMENTAL EVALUATION
We implement an experimental tool, SCSlicer[19], using

the above research. Then, we collect some results related to
security check slices to extensively evaluate the scalability and
effectiveness of SCSlicer using the Linux kernel.

A. SCSlicer: Security Check Peer Slicer
Based on the study in III, we implement a security check

peer slicing tool, SCSlicer. Figure 3 illustrates the workflow of
SCSlicer. Since the identification of security checks relies on
precise exception handling functions, the first step of SCSlicer
is to identify a more comprehensive set of exception handling

functions. Based on exception handling functions and error
codes, SCSlicer extends the security check identification
algorithm mentioned in [14] to generate sets of security check
conditional statements and security check functions. With the
sets, our second step is to identify indirect call targets to
construct an accurate call graph, thus identifying the source and
use of critical variables. We find the target of an indirect call by
matching the number and type of arguments of a function
pointer, for which an assignment relationship exists, with the
target function. Finally, we construct security check peer slices
using the three slicing criterions described in III.B..

B. Evaluating the Constructing of Security Check Peer Slices
In this section, we extensively evaluate SCSlicer using

Linux Kernel of version 5.5-rc7 with the top git commit number
def9d2780727cec. The experimental environment is conducted
on an Ubuntu 16.04 LTS system with LLVM 10.0. We use
wllvm[20] to generate a 452M LLVM IR bytecode file to cover
more modules.

Statistical results. Before presenting the evaluation results,
we first show some interesting statistical results, as shown in
TABLE 1. With the cloc[21] tool, the evaluation experiment
covers 18.8 million lines of Linux kernel code. For Linux,
SCSlicer identified 46.1K security checks, which are security
check conditional statements (97.3%) and security check
functions (2.7%). SCSlicer identified 172.9K security check
slices using the three slicing criteria defined above, and a total
of 9.5K security check peer semantic slices. The 822 security
check peer slices are identified by indirect call scenarios.
SCSlicer found most security check peer slices (65.5%) in SC-
3 scenario. Since we added the security check functions to
security checks, SCSlicer builds more security-checking peer
slices than CRIX. SCSlicer finds more security check slices and
security check peer slices. If we use SCSlicer to audit the Linux
kernel, we can find more kernel semantic bugs.

False negatives. SCSlicer constructed security check peer
slices via the three slicing criterions. SCSlicer may have false
negatives if not all slicing criterions are covered. However,
other slicing criterions are difficult to solve program semantic
problems because they are not easily semantic- and context-
aware.

False positives. SCSlicer found 9.5K security check peer
slices, however CRIX identified 5.4K. To evaluate false
positive, we randomly selected 500 slices reported by the two
tools for Linux kernel, and confirmed whether they are real
security check peer slices based on the definition described in
III. The results show that 467 of them are true positives.

Figure. 3. The workflow of SCSlicer. SCSlicer takes as input the kernel source code and some basic exception handling functions to automate the construction of
security check peer slices

111

Authorized licensed use limited to: Peking University. Downloaded on September 28,2021 at 08:22:26 UTC from IEEE Xplore. Restrictions apply.

TABLE 1: SOME STATISTICAL NUMBERS RELATED TO SECURITY CHECK SLICES

Tool
Security checks Security

check
slices

Security check
peer slices

Through
SC-1

Through
SC-2

Through
SC-3 Conditional

statements Functions

CRIX 42.6K 0 116.2K 5.4K 709 1463 3254
SCSlicer 44.9K 1.2K 172.9K 9.5K 822 2464 6235

Scalability. The experiments were performed on an Ubuntu
16.04 LTS system with LLVM version 10.0 installed. The
machine has a 8 GB RAM and an Intel CPU (Core™ i5-8265U
1.6GHz) with 8 cores. SCSlicer is faster than CRIX it finished
the whole analysis for Linux within 10 minutes: three minutes
are for loading bitcode files and identifying security checks, and
seven minutes is for constructing security check peer slices.

V. APPLICATION OF SECURITY CHECK PEER SLICES
Security check peer slices are very informative in revealing

critical semantics. With them, a bug related to security check is
more likely to be detected or triggered. Without such
information, a bug detected by previous approaches[1, 2, 3, 4,
16, 22, 23] may not be critical at all or is a false positive. Also,
we may find other unchecked variables on the security check
slices.

In this section, we will present how to use these slices to
effectively detect critical kernel semantic bugs: missing security
check bugs and inaccurate security check bugs. In addition, we
combine security check peer slices and code auditing technology
to help auditors find common vulnerabilities in source code
more quickly.

A. Detecting Critical Kernel Semantic Bugs
In this section, we will present how to use security check

peer slices to effectively detect critical kernel semantic bugs
involving missing security checks and inaccurate security
checks.

Missing security checks. Missing security checks is a class
of semantic bugs in software programs where erroneous
execution states are not validated. We construct three different
peer slices by using the targets of security check statements as a
starting point and finding their source and use through taint
forward and backward analysis. Using these peer semantic slices,
we can detect missing security check bugs by implementing the
following steps: (1) identifying security checks in peer semantic
slices and modeling constraints on critical variables; (2) finding
peer slices that do not do security checks on critical variables;
and (3) calculating the proportion of slices with missing security
check statements among all peer semantic slices to generate
bugs detection reports.

Inaccurate security checks. There are a large number of
security checks in the Linux kernel source code, but the accuracy
of the security checks is often disputed. Inaccurate security
checks can lead to serious security impacts. Inaccurate security
check bugs focus on correcting security checks to prevent
vulnerabilities such as some buffer overflows, as opposed to
security check missing bugs. Similar to detecting missing
security checks, we identify all security checks in peer semantic

slices containing security checks and model constraints on
critical variables. Then, we also calculate the proportion of
constraints in a class of security check slices containing security
check for the same critical variable. Finally, we believe that the
constraint that appears most often is the correct security check.

VI. DISCUSSION
In this section, we discuss limitations of SCSlicer that can be

potentially improved and explored as future work directions.

Slicing criterions. There are a wide variety of security check
slices within the kernel. According to call instructions and return
instructions tending to generate peer paths, SCSlicer
summarizes three slicing criterions. However, in addition to
criterion 1-3, whether there are other criterions is also a question
worthy of discussion. An improved model can include as many
slicing criterions as possible, to make the SCSlicer more
complete.

Bugs Detection. Critical kernel semantic bugs are detected
by cross-checking security check slices. We can set the
threshold to a proper value to minimize the false positives at the
cost of completeness. The specific vulnerabilities found through
the use of this tool are our next step to do. Similarly, the method
proposed in this paper can be used to detect bugs in other
software other than the kernel. However, it may have lots of
false positives for smaller target programs because they do not
have enough security check peer slices.

VII. RELATED WORK
To the best of our knowledge, SCSlicer is the first

systematically to construct security check peer slices. We
identify two research lines that are related to SCSlicer: error
handling analysis and missing-check detection.

Error handling analysis. Several efforts have attempted to
analysis error handling. EIO[24] presents an approach that uses
data-flow analysis to detect unchecked errors in the file system
code. Cheq[16] locates security checks and error handling
functions in the kernel by searching certain patterns and uses this
information to detect bugs. EPEx[25] and APEx[26] identify
code paths in a callee function that may return error codes and
check if the error codes are handled in callers. Hector[27]
targets the properties of error-handling code to detect resource-
release bugs.

Missing-check detection. LRSan[13] detects lacking-
recheck bugs, a subclass of missing-check bugs. It however uses
only standard error codes without considering custom error
codes and error-handling functions. With our tool SCSlicer, We
can detect general missing-check bugs and inaccurate-check
bugs that include lacking-recheck bugs. Crix[3] cross-checks a
property and uses statistical analysis to detect missing-check

112

Authorized licensed use limited to: Peking University. Downloaded on September 28,2021 at 08:22:26 UTC from IEEE Xplore. Restrictions apply.

bugs, but constructs less peer slices compared with SCSlicer for
security check functions are not considered; It cannot detect
inaccurate-check bugs because the cross-checking target is all
peer slices. Utilizing cross-checking between existing
implementations of file systems, Juxta[2] detect semantic bugs
such as missing-check bugs. SCSlicer can analyze all
subsystems in the Linux kernel. There are also a few other
complementary approaches to detect missing-check. Chucky[1]
uses check deviations to infer missing check. MACE[28] is an
annotation based on static analysis framework and it can find
missing authorization checks in web applications. Pex [4] uses
implicit programming rules to find missing, inconsistent, and
redundant permission checks.

VIII. CONCLUSION
 We presented our study on security check peer slices and
designed an automated experimental tool, SCSlicer, for
precisely constructing security check peer slices in OS kernel.
The Construction is semantic- and context-aware with an inter-
procedural data flow analysis. In addition, to find common
vulnerabilities more quickly, we introduce the Scenarios for
semantic vulnerability detection by security check peer slices:
missing security check and inaccurate security check. We
believe that construction of security check peer slices could
facilitate future research on the semantic bug detection.

REFERENCES
[1] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck, “Chucky:

exposing missing checks in source code for vulnerability discovery,”
2013, pp. 499-510.

[2] C. Min, S. Kashyap, B. Lee, C. Song, and T. Kim, “Cross-checking
semantic correctness: the case of finding file system bugs,” 2015, pp. 361-
377.

[3] K. Lu, A. Pakki, and Q. Wu, “Detecting Missing-Check Bugs via
Semantic- and Context-Aware Criticalness and Constraints Inferences,”
2019, pp. 1769-1786.

[4] T. Zhang, W. Shen, D. Lee, C. Jung, A. M. Azab, and R. Wang, “PeX: A
Permission Check Analysis Framework for Linux Kernel,” 2019, pp.
1205-1220.

[5] W. Gu, Z. Kalbarczyk, R. K. Iyer, and Z.-Y. Yang, “Characterization of
Linux Kernel Behavior under Errors,” 2003, pp. 459-468.

[6] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating Fuzz
Testing,” 2018, pp. 2123-2138.

[7] S. Y. Kim, S. Lee, I. Yun, W. Xu, B. Lee, Y. Yun, T. Kim, and U. Assoc,
“CAB-FUZZ: Practical Concolic Testing Techniques for COTS
Operating Systems,” 2017 Usenix Annual Technical Conference, pp. 689-
701, 2017.

[8] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, Z. Chen, and Ieee,
"CollAFL: Path Sensitive Fuzzing," 2018 Ieee Symposium on Security
and Privacy, IEEE Symposium on Security and Privacy, pp. 679-696,
2018.

[9] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic, “SoftBound:
Highly Compatible and Complete Spatial Memory Safety for C,” Acm
Sigplan Notices, vol. 44, no. 6, pp. 245-258, Jun, 2009.

[10] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos, “No
Need to Hide: Protecting Safe Regions on Commodity Hardware,” 2017,
pp. 437-452.

[11] L. Mogosanu, A. Rane, and N. Dautenhahn, “MicroStache: A
Lightweight Execution Context for In-Process Safe Region Isolation,”
2018, pp. 359-379.

[12] " NVD NIST Search," https://nvd.nist.gov/.
[13] W. Wang, K. Lu, and P.-C. Yew, “Check It Again: Detecting Lacking-

Recheck Bugs in OS Kernels,” 2018, pp. 1899-1913.
[14] M. Weiser, “Program Slicing,” IEEE Trans. Software Eng., vol. 10, no. 4,

pp. 352-357, /, 1984.
[15] P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro, “How Double-

Fetch Situations turn into Double-Fetch Vulnerabilities: A Study of
Double Fetches in the Linux Kernel,” 2017, pp. 1-16.

[16] K. Lu, A. Pakki, and Q. Wu, “Automatically Identifying Security Checks
for Detecting Kernel Semantic Bugs,” 2019, pp. 3-25.

[17] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa, “Path-Sensitive
Backward Slicing,” 2012, pp. 231-247.

[18] "eventfd.c,"
https://github.com/torvalds/linux/blob/v5.3/virt/kvm/eventfd.c.

[19] "SCSlicer," https://github.com/LinusRobot/SCSlicer.
[20] "wllvm," https://pypi.org/project/wllvm/.
[21] "CLOC," http://cloc.sourceforge.net/.
[22] I. Dillig, T. Dillig, and A. Aiken, “Static error detection using semantic

inconsistency inference,” 2007, pp. 435-445.
[23] T. Kremenek, P. Twohey, G. Back, A. Y. Ng, and D. R. Engler, “From

Uncertainty to Belief: Inferring the Specification Within,” 2006, pp. 161-
176.

[24] H. S. Gunawi, C. Rubio-González, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and B. Liblit, “EIO: Error Handling is Occasionally Correct,”
2008, pp. 207-222.

[25] S. Jana, Y. J. Kang, S. Roth, and B. Ray, “Automatically Detecting Error
Handling Bugs Using Error Specifications,” 2016, pp. 345-362.

[26] Y. J. Kang, B. Ray, and S. Jana, “APEx: automated inference of error
specifications for C APIs,” 2016, pp. 472-482.

[27] S. Saha, J.-P. Lozi, G. Thomas, J. L. Lawall, and G. Muller, “Hector:
Detecting Resource-Release Omission Faults in error-handling code for
systems software,” 2013, pp. 1-12.

[28] M. Monshizadeh, P. Naldurg, and V. N. Venkatakrishnan, “MACE:
Detecting Privilege Escalation Vulnerabilities in Web Applications,”
2014, pp. 690-701.

113

Authorized licensed use limited to: Peking University. Downloaded on September 28,2021 at 08:22:26 UTC from IEEE Xplore. Restrictions apply.

