
EnvFaker: A Method to Reinforce Linux Sandbox
Based on Tracer, Filter and Emulator against

Environmental-Sensitive Malware

1st Chenglin Xie
Peking University
Beijing, China

cony1996@pku.edu.cn

2nd Yujie Guo
Peking University
Beijing, China

justaname@pku.edu.cn

3rd Shaosen Shi
Peking University
Beijing, China

deadpoo3@pku.edu.cn

4th Yu Sheng
Peking University
Beijing, China

syu@pku.edu.cn

5th Xiarun Chen
Peking University
Beijing, China

xiar c@pku.edu.cn

6th Chengyang Li
Peking University
Beijing, China

lcymoon@pku.edu.cn

7th Weiping Wen
Peking University
Beijing, China

weipingwen@pku.edu.cn

Abstract—Sandbox is an excellent tool for dynamic malware
analysis. However, the sandbox detection techniques are increas-
ingly adopted to develop malwares, which has been a significant
threat to sandbox analysis. These malwares can detect the run-
ning environment and show different behaviors in corresponding
environments. So far, there have been several studies about
countermeasures, but most of them concentrate on Windows
OS. Environmental features in Linux sandbox have not been
summarized yet. Besides, existing popular sandboxes can hardly
combat against sandbox detecting techniques.In this paper, we
focus on Linux sandbox. We firstly propose Linux environmental
features from six aspects and implement an effective tool to
collect features from running environment to tell the discrepancy
among physical machine, virtual machine and sandbox. More
importantly, we present EnvFaker, an effective method to rein-
force Linux sandbox against environmental-sensitive malware.
This method uses tracer to track child process and injected
process, filters to intercept sandbox detecting behaviors, and
emulator to disguise wear-and-tear and network environment.
The experimental results further demonstrate that our method
is effective against detecting techniques for Linux sandbox.

Index Terms—Sandbox reinforcement, Environment-sensitive
malware, Environmental features

I. INTRODUCTION

In recent years, malwares targeting Linux OS are on the

rise. To detect malwares, sandbox is widely used in dy-

namic analysis to facilitate malware analysts to quickly and

intuitively gain the runtime behavior of malware. With the

increasing use of sandboxes, various environment-sensitive

malwares have grown rapidly. These malwares can detect

current running environment and show different behaviors in

corresponding environments. As shown in Fig. 1, if malwares

try to detect current environmental features and find that they

are in a sandbox, they will stop executing immediately to

avoid exposing too many malicious behavoirs to foil dynamic

analysis.

Fig. 1. How to identify a sandbox.

Traditional environmental-sensitive malware studies usu-

ally focus on Windows OS. However, the features in Linux

sandbox are quite different. There are two main differences.

One is that Windows OS has more user interaction than

Linux OS because Linux OS is often used for server or IoT

devices. So, there is no need to hide user interaction features

[1]. Another is that some special features in Windows OS

are not suitable for Linux environmental detection. These

features will not be taken into consideration in our method,

such as registry, browser history and user interaction (Typing,

clipboard, mouse movement and display resolution) [2]. By

contrast, process features, wear-and-tear artifacts [3], hardware

features [4], particular patterns [5], and tracing features can be

more effectively applied in Linux OS.

So far, some scholars have proposed a variety of coun-

termeasures against environmental-sensitive malware, such

as symbolic execution [6] and multi-environmental analysis

[7]–[9]. However, symbolic execution and multi-environment

analysis can bring great overhead, difficult to directly deployed

in sandbox. Besides, user behavior emulator [10] and Windows

API hooking technique [11] have been introduced to interfere

667

2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

2324-9013/21/$31.00 ©2021 IEEE
DOI 10.1109/TrustCom53373.2021.00099

20
21

 IE
EE

 2
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 T
ru

st
, S

ec
ur

ity
 a

nd
 P

riv
ac

y
in

 C
om

pu
tin

g
an

d
Co

m
m

un
ic

at
io

ns
 (T

ru
st

Co
m

) |
 9

78
-1

-6
65

4-
16

58
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

TR
U

ST
CO

M
53

37
3.

20
21

.0
00

99

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:46 UTC from IEEE Xplore. Restrictions apply.

with environment detecting behaviors. Even so, these methods

are proposed for Windows sandbox and simple user behavior

emulator or API hooking technique is not enough for sandbox

reinforcement.

In this paper, we concentrate on Linux sandbox and seek

to tackle these problems. We propose Linux environmental

features from six aspects to identify sandbox and implement an

effective tool to collect features from running environment to

tell the discrepancy among physical machine, virtual machine

and sandbox. By applying this tool, we design experiments to

evaluate the effectiveness of our features. In addition, we pro-

pose EnvFaker, an effective method to reinforce Linux sandbox

against environmental-sensitive malware. This method takes

tracer to track child process or injected process of malware, fil-

ter to intercept actions of environment detecting and emulator

to disguise wear-and-tear and network environment. By these

ways, we effectively reinforce Linux sandbox from 6 aspects:

process features, wear-and-tear features, hardware features,

particular patterns, network emulation and tracing features.

In conclusion, this paper makes the following contributions:

1) We analyze thousands of Linux ELF malware samples

and make statistics for common malware behaviors. We

filter out improper features from Windows OS and find

new features of Linux sandbox, firstly concluding a list

of features from 6 aspects to detect Linux sandbox,

which can be of great help for future research.

2) We implement an effective tool to gather features from

running environment to show the discrepancy among

physical machine, virtual machine and sandbox and

evaluate the effectiveness of the features mentioned

above.

3) We present a comprehensive method called EnvFaker to

reinforce Linux sandbox from process features, wear-

and-tear features, hardware features, particular patterns

and tracing features to induces environmental-sensitive

malware to show its malicious behavior.

The rest of the paper is organized as follows. Section II in-

troduces environmental features in Linux sandbox, and Section

III is for architecture and implementation. The evaluation will

be elaborated in Section IV, and the limitation and discussion

will be given in Section V. Section VI is related work. Section

VII will conclude the paper.

II. ENVIRONMENTAL FEATURES IN LINUX SANDBOX

To determine the plausibility of an environment being a

real Linux machine or a sandbox, malwares depend on many

details that are indicative of environmental features. In this

section, based on previous work, we seek to find corresponding

instance of well-known features in Linux sandbox and filter

out improper features in Windows OS. Combined with these

features, we add some particular features in Linux sandbox and

classify them into 6 aspects. Most of the features are reliable

and deterministic and will be evaluated in Section IV. To

make our features convictive, we analyze thousands of Linux

malwares for our study. We download ELF malware samples

from VirusTotal [12] and VirusShare [13] platform between

TABLE I
TOP 10 POSSIBLE ENVIRONMENTAL DETECTING BEHAVIORS

Behaviors Counts Percentage

Initial process getting parent pid 158 13.07%

Getting MAC address information 87 7.20%

Getting CPU information 23 1.90%

Accessing memory file 22 1.82%

Executing ps program 13 1.08%

Executing netstat program 13 1.08%

Getting module information 5 0.41%

Accessing log files 3 0.25%

Getting DMI information 3 0.25%

2019 and 2020 seperately to make data more comprehensive.

We download 578 samples from VirusTotal and 631 samples

from VirusShare. Based on these samples, we make statistics

about environmental behaviors, as shown in Table. I.

Process Features. To be a sandbox, firstly, it is necessary

for the OS to pre-deploy some monitoring process. Secondly,

virtual machine is often adopted to facilitate recovering en-

vironment. Furthermore, it is necessary for sandbox to have

a tracer to track target process. So, process features in Linux

sandbox are fingerprints related to sensitive process in process

list and artifacts in process environment. We classify sensitive

process into 3 categories: monitoring process, virtual machine

daemon process and tracing process. Examples of sensitive

monitoring processes include Tshark [14], TCPDUMP [15],

etc. Examples of sensitive virtual machine daemon processes

include vbox, vmtools, etc. Examples of sensitive tracing

processes include strace, systemtap [16], etc. These running

processes indicate that the current running environment is

abnormal. Malwares use ps program to gather process infor-

mation. Besides, ld preload variable in process environment

stands for tracing features because some sandboxes may inject

codes into malwares to trace their behavior by setting this

variable.

Wear-and-Tear Features. Wear-and-Tear features of sandbox

were firstly proposed by N. Miramirkhani et al. [3] , which

indicate the history of use of an OS. However, they focus

on Windows OS. Most of the features they have proposed

are not suitable for Linux. We filter out specific features

of Windows sandbox such as interaction features and keep

common and representative trails such as log count, network

connection count, etc. Log files record past activity in OS.

To some extent, active network connection count and running

process count can represent how long this system has worked.

Besides, installation date, update date and last login date are

also exploitable sources to check how old a system is because

these values will be reset after sandbox recovers its system.

Hardware Features. Hardware information shows the arti-

facts of running environment. Due to the widespread use of

virtual machines, hardware features of virtual machine reveal

668

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:46 UTC from IEEE Xplore. Restrictions apply.

TABLE II
TOP 9 COMMON USED PORTS OF SAMPLES

Ports Protocols Counts Percentage

23 TELNET 176 14.56%

53 DNS 102 8.44%

80 HTTP 71 5.87%

2323 / 61 5.05%

666 / 43 3.56%

37215 / 41 3.39%

8080 / 31 2.56%

443 HTTPS 20 1.65%

52869 / 14 1.16%

lots of environmental information in sandbox. A. Yokoyama

et al. [1] have propose many hardware features of sandbox.

Similarly, their work concentrates on Windows OS too. To

find hardware features in Linux sandbox, besides concluding

previous features and filter out improper features, we absorb

hardware features from VM-detect tools such as check-VM

module in Metasploit Framework [17]. In addition, we clas-

sify these features into 8 subcategories: DMI information,

hardware configuration, CPU information, SCSI information,

disk information, kernel ring buffer information, MAC address

information and others. Details of files or binaries to get these

features will be further demonstrated in Table. III.

Network Environment Features. Some sandboxes such as

Lisa sandbox [18] cut off Internet connection simply for

security consideration. However, some cunning malwares tend

to connect to their server by sorts of protocols in reverse

to inform the controller to download additional modules or

send commands. It is of great significance to disguise network

accessibility to induce malwares to show malicious behaviors.

HTTP and FTP are two popular protocols to download files.

DNS protocol is often used to resolve domain name of

server from attacker. TELNET protocol is often adopted to

executing commands in remote devices. As shown in Table.

II, these protocols are commonly used by malware samples.

The accessibility of these protocols is adopted to network

environmental features.

Tracing Features. Tracing techniques is one of the most

representative methods applied in sandbox such as ptrace and

strace(a ptrace-based tool to track system call of process). By

setting TRACE ME parameter of ptrace function, malwares

are able to check if they are being tracked due to the

infeasibility of double-ptrace mechanism in Linux. As shown

in Code. 1, By checking its parent process name, malware

can discover tracer process. Kernel debugging file is also

prepared for handling trace tasks.There are two switch files

in /sys/kernel/debug/ folder representing the status of kernel

debugging, providing an opportunity for malware to detect.

Systemtap and kprobe are also widely used in Linux sandbox.

By these ways, new kernel modules will be added to kernel

module list to track behaviors of malwares. Hence, current

kernel module list may be checked to make sure current

environment is not under monitoring or tracing.

Particular Patterns. J. Blackthorne et al. [11] have pointed

that hardcode sample name and computer name are widely

used in Windows sandbox for the convenience of analysis.

In Linux sandbox, this phenomenon may happen too. When

systemtap is adopted in sandbox, kernel modules of tracing

program are often compiled with hardcode sample name for

efficiency. Examples of file or folder names include “sample”,

“test” and “self”. The hash of the file is also a popular

name during analyzing to specify unique names of samples.

Examples of hostname include “sandbox”, “analyzer” and

other meaningful phrases. These can be a potential threat to

sandbox. Once malwares check these patterns before display-

ing malicious behaviors, they can find that they are running

in a fake environment.

1 i f p t race (PTRACE TRACEME,0 ,0 ,0)<0
2 e x i t (−1) ; / / s top running
3 else
4 / / expose mal ic ious behaviors
5 keep running () ;

Code 1. Anti-debug method by ptrace

Environmental Detecting Tool For Linux sandbox. We im-

plement an automation tool with Python on the foundation of

an open-source tool named checkvm (a detecting module in

Metasploit framework) to gather features mentioned above as

rich as possible.

Considering that some platforms may rename malware to

containing its hash string, our tool packs its Python code

file into executable file with Pyinstaller [19] for convenience

of hash calculation. While running, the tool calculates hash

values of itself and check if its name matches particular

patterns or hash strings by accessing three different process

files:/proc/self/comm, /proc/self/cmdline and /proc/self/status.

Besides, this tool gathers process features by executing ps

program to find sensitive process and detecting ld preload

variable in process environment by read /proc/self/env file.

Hardware features are collected by accessing hardware related

file and executing hardware related binaries. Wear and tear

features are collected by calculating row counts of log files,

counts of TCP connection, counts of running process, instal-

lation date, update date and last login date. Several thresholds

were set to distinguish the new and the old machine according

to the results of our survey of used machine. To test whether

network can be reached, this tool tries to download files by

HTTP and FTP protocol from a temporary server and resolve

a specific domain name. Tracing features are detected by

setting the parameter TRAME ME of ptrace function and

check its return value. To get parent process name, it calls

getppid function and accesses /proc/self/status file to transfer

pid to name. This tool compares parent process name with

sensitive list to check environment. The tool accesses kernel

debugging files to check if kernel debugging is enabled and

kernel module file to check abnormal modules like systemtap.

669

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:46 UTC from IEEE Xplore. Restrictions apply.

The effectiveness of this tool will be evaluated in Section IV-A.

III. ARCHITECTURE AND IMPLEMENTATION

The reason why we deploy EnvFaker into Linux sandbox

is that this system, which identifies environmental detecting

behaviors of suspicious malwares, provides pre-configured

environment with tracer, emulator and filter, and redirects

environmental query requests to misguide malware. Fig. 2

shows an overview of EnvFaker architecture, which consists of

3 parts. The first one is target tracer which tracks child process

and injected process by ptrace. The second one is features

emulator, which offers malwares an emulation environment

after operating system booting. When malwares detect wear-

and-tear features or network environment to check whether it

runs in a sandbox or accessing well-known services, the emu-

lator works to misguide environmental-sensitive malware. The

last one is the features filter, which includes process features

filter, hardware features filter, tracing features filter and par-

ticular pattern filter. The features filter redirects environmental

detecting requests from environment-sensitive malwares to a

crafted environment to mislead them. By the three modules

mentioned above, malwares draw a fake conclusion about the

running environment. Details of the system will be elaborated

in the following section.

To expound on the implementation of EnvFaker, we demon-

strate the principles of the main three modules. The relation-

ship among the three modules are shown in Fig. 3.

A. Target Tracer

During running, malwares may create processes or inject

other processes to take various tasks, both of which should

be taken into consideration. As shown in Table. IV, about

45% of these samples create subprocesses or threads. Only

about 22% of samples just handle their task in single process.

As shown in Table. V , about 0.41% of these samples inject

other processes by ptrace, 0.58% of which use TRACEME

parameter of ptrace against dynamic analysis from ptrace-

based tool. To attach to the targets and track the behaviors of

target samples comprehensively, we ought to monitor process

creation and injection. We adopt two different approaches to

maintain a target process list with the help of systemtap.

Child Process Tracer. To track child process or thread of

target malware, we monitor the function of process creation.

Every time a process calls this function, its parent process id

will be compared with that in target process list and recorded.

If right, this process id will be appended to the target process

list.

Injected Process Tracer. To track the injected process of

target malware, we hook the system call named ptrace. When-

ever target process calls this system call, its parameters will

be recorded, some of which represent the target process id to

be injected. This value will be added to the target process list

too.

B. Features Filter

To filter out environmental detecting behaviors of mal-

wares and redirect the requests from malwares to crafted

environment, the first task we need to handle is to intercept

detecting behaviors from malware. Then, our focus shift to

how malwares detect environmental features. To this end,

there are two feasible ways: executing specific commands like

lshw or accessing specific file like /proc/cpuinfo. In essence,

these two methods are the same ways. We trace executing

binaries and find that these programs try to get information

by accessing specific file in the OS. So, by intercepting file

accessing, we are able to intercept detecting behaviors from

malwares.

As is known to us, the standard step to get the contents

of a file is opening, reading and closing. Now, we focus

on the first step and try to intercept file opening requests

from sample target. In Linux OS, whenever a process attempt

to open a file, open syscall is called and the system traps

from user ring into kernel ring. Then, open syscall triggers

kernel function sys open in sequence and sysopen function

calls kernel function do sys open subsequently. In this kernel

function, getname function is called to get filepath of target

file and do filep open funciton will handle the rest operations.

To make this process clear, we introduce the simplified code

of calling process, as is shown in Code. 2.

1 / * implementat ion o f open sysca l l * /
2 SYSCALL DEFINE3(open , const char user * ,

f i lename , i n t , f l ags , i n t , mode)
3 {
4 . . .
5 / / c a l l do sys open
6 long r e t = do sys open (AT FDCWD, f i lename ,

f lags , mode) ;
7 . . .
8 }
9

10 / * implementat ion o f do sys open func t i on * /
11 long do sys open (i n t dfd , const char user *

f i lename , i n t f l ags , i n t mode)
12 {
13 . . .
14 / / copy f i lename in user r i ng to kerne l

r i n g
15 char * tmp = getname (f i lename) ;
16

17 / / c a l l do f i lep open
18 s t r u c t f i l e * f = do f i lp open (AT FDCWD,

tmp , f l ags , mode , 0) ;
19 . . .
20 }

Code 2. Simplified Implement of open related function

To redirect the detecting requests from malwares, we ought

to replace the filepath. However, filepath may be used in two

different ways: relative path and absolute path. As shown in

Table. VI, only 21% of samples use relative path. Luckily,

most of them are used for configuration and environmental

feature files are often place in fixed folders. Therefore, inter-

cepting absolute path is enough for us. By hooking parameters

670

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:46 UTC from IEEE Xplore. Restrictions apply.

TABLE III
ENVIRONMENTAL FEATURES IN LINUX SANDBOX

Category Features Details

Process Features

Sensitive network monitor process Tshark, Wireshark [14] and TCPDUMP process

Sensitive tracer process Sysdig, strace, ftrace, and Systemtap module process

Sensitive VM daemon process iprt-VBoxWQueue, iprt-VBoxTscThr, VboxClient, VBoxService, VirtualBoxVM, vm-
toolsd, vmhgfs and irq/16-vmwgfx process

Injected process Ld preload variable

Wear-and-Tear Features

Row counts of log files /var/log/secure, /var/log/messages, /var/log/maillog, /var/log/cron, /var/log/httpd/ac-
cess log, /var/log/httpd/error log, /var/log/mysqld.log files

Running process counts Results of executing ps program

Active connection counts Results of executing netstat program

Particular dates OS installation data, latest update date and last login date

Hardware Features

DMI information Results of executing dmidecode program and accessing /var/log/dmesg, /sys/firmware/d-
mi/tables/DMI, /sys/class/dmi/id/product serial, /sys/class/dmi/id/sys vendor, /sys/-
class/dmi/id/modalias, /sys/class/dmi/id/product name, /sys/class/dmi/id/product uuid
and /sys/class/dmi/id/uevent files

Hardware configuration Results of executing lshw and lspci program, accessing /usr/share/hwdata/pci.ids,
/usr/share/hwdata/pnp.ids and /usr/share/hwdata/usb.ids files

CPU information Results of executing lscpu program and accessing /proc/cpuinfo file

SCSI information Results of accessing /proc/scsi/scsi file

Disk information Results of accessing files in /dev/disk/by-id/ folder, names of which containing VBOX,
VMware, QEMU

Kernel ring buffer information Results of executing dmesg program and accessing /dev/kmsg file

MAC address information Results of executing ifconfig and ip program, and accessing /proc/net/arp, /sys/-
class/net/<network adapter>/address, /etc/sysconfig/network-scripts/ifcfg-<network
adapter>files

Other information Total memory size, block size of file system, cores of CPU

Network Environment Network Accessibility HTTP, FTP, TELNET and DNS accessibility

Tracing Features
Being tracing Being tracked by ptrace or not, ppid

Kernel debugging file /sys/kernel/debug/kprobes/enabled and /sys/kernel/debug/tracing/tracing on file

Kernel module information Results of executing lsmod program and accessing /proc/modules file

Particular Patterns
Particular strings in file or folder names “sample”, “test”, “self”, “analyzed” strings

Hash strings in file or folder names MD5, SHA1, SHA256 strings

Particular strings in hostname “sandbox”, “analyze”, “guest”, “cuckoo” strings

TABLE IV
SAMPLES CREATING SUBPROCESSES OR THREADS

Process Type Counts Percentage

Single process 264 21.84%

Subprocess count in [1,5] 393 32.51%

Subprocess count in [6,9] 65 5.38%

Subprocess count in [10,19] 37 3.06%

Subprocess count in [20,49] 10 0.83%

Subprocess count in [50,99] 19 1.57%

Subprocess count in [100,319] 12 0.99%

Creating threads 4 0.33%

Creating subprocesses or threads 540 44.67%

TABLE V
SAMPLES USING PTRACE

Ptrace Counts Percentage

TRACEME 7 0.58%

Injection 5 0.41%

of getname function, we can intercept the requests from

malwares and replace target file with crafted file or non-exist

file so that malwares get fake results.We implement 4 features

filters from different perspectives.

Process Features Filter. Based on the process features

mentioned in Section II, the first thing we should do is to hook

process list to hide sensitive processes. Usually, ps program

is used to get process list. We try to trace systemcall of this

program to know how it works and find that it iterates all legiti-

671

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:46 UTC from IEEE Xplore. Restrictions apply.

Malware

Emulated
Environment

Features Filter Crafted
Environment

Fake Result

Features
Emulator

Process Features Debugging
Features

Hardware
Features

Particular
Patterns

Process Features Debugging
Features

Hardware
Features

Particular
Patterns

Well-Known
Services

Wear-And-Tear
Features

Network
Environment

Well-Known
Services

Wear-And-Tear
Features

Network
Environment

Child Process
Tracer

Injected Process
Tracer

Child Process
Tracer

Injected Process
Tracer

attached access

disguise

trigger redirect

access

Fig. 2. Architecture of EnvFaker.

Target TracerTarget Tracer

Features FilterFeatures Filter

Features
Emulator
Features
Emulator

Tracing and helping capture
behavior as rich as possible

Behaviors trigger
rules of filter

Behaviors trigger rules of
emulator

(Features hard to cover)

(Features less hard to cover)

Pass

Fig. 3. The relationship between tracer, fileter and emulator.

TABLE VI
WAYS TO USING PATH OF SAMPLES

Type Counts Percentage

Using relative path 258 21.34%

Only using absolute path 542 44.83%

mate pids and access /proc/<pid>/stat and /proc/<pid>/status
file to form a running process list of system. So, if we hook

these files, we can hide sensitive process even filter itself from

ps program. Besides, once a process is hooked by ld preload

method, its process environment will be set with a special

string. Similarly, process environment information stores in a

file named /proc/<pid>/environ. Thus, if we replace malware

process the environment file by a normal non-injected process

file, malware will gets normal result. These file accessings can

be intercepted by hooking getname funciton in do sys open,

as mentioned above.

Hardware Features Filter. Malwares may execute binaries

in /usr/bin folder like lshw or directly access hardware-related

configuration file like /proc/cpuinfo to get hardware features

to detect environment. File details are listed in Table. III. By

hooking file opening, we replace these files with our crafted

file from physical devices to cheat on malwares.

Tracing Features Filter. Due to the infeasibility of double-

ptrace mechanism in Linux, environmental-sensitive malwares

can make use of the parameter TRACE ME of ptrace function

and check the return value to determine if their process are

traced. Based on this principle, the solution is to modify the

return value of ptrace function. Likely, we modify the return

value of getppid function called by malwares to misguide

them. Besides, we find that kernel debugging files such as

/sys/kernel/debug/kprobes/enabled and /sys/kernel/debug/trac-
ing/tracing on will be set to specific values in virtual ma-

chine system. In addition, kernel modules list will change if

systemtap or other kernel modules are deployed in the OS.

The module list is stored in /proc/modules file. We use kernel

function hooking techniques to intercept this progress.

Particular Patterns Filter. Many sandboxes tend to rename

samples to a common name or put samples into a particular

folder for convenience of analysis, new names of which fit

some particular patterns. To get their names, malware pro-

cesses may access /proc/self/comm, /proc/self/cmdline, /proc/-
self/stat and /proc/self/status file. Changing the status file may

672

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:46 UTC from IEEE Xplore. Restrictions apply.

cause instability of the malware because this file contains not

only filename but also other important process information,

which is changing during executing. So, we choose the other

two files to filter. Hostname is another one that may contain

particular patterns, stored in /etc/hostname file. We prepare

several crafted files names hidden name from target to avoid

environmental-sensitive malwares from checking their names

to find anomalies in OS.

C. Features Emulator

To make the environment real, sandbox environment need

to be decorated to cheat on malwares. We implement three

features emulators: services emulator, wear and tear features

emulator and network emulator. The three emulators are pre-

deployed in sandbox after OS booting.

Service Features Emulator. Sandbox is designed to analyze

malware fast and accurately. So, a clean system is often

adopted as default, which means some popular services such

as Apache and MySQL may not be contained in sandbox.

However, malwares may attack or collect information from

these services such as injection or privilege promotion. To

expose behaviors of malwares, well-known services need to

be pre-installed in Linux OS.

Wear-and-Tear Features Emulator. Wear-and-tear represents

how old a running system is. To disguise sandboxes as a

kind of used system, we design an initializer to adjust log

count, alive connection count and running process count by

setting thresholds config file, according to current environment

automatically.

Network Emulator. Internet connections are sometimes dan-

gerous for sandbox in that part of hazardous malwares may

attack other devices on the Internet. To handle this problem

and provide malwares active feedbacks, INetSim [20] program

is adopted in our system to respond network requests to

malwares according to varieties of protocols.

IV. EVALUATION

In this section, we first evaluate the effectiveness of the tool

to distinguish physical machine, virtual machine and sandbox.

We then use this tool to test our reinforcement method by

comparing popular open-source Linux sandboxes before and

after reinforcement, and to prove the effectiveness of our

method.

A. Effectiveness of Environmental Detecting Tool

To evaluate the effectiveness of the detecting tool, we design

two experiments separately to compare environmental features.

Firstly, we compare a new physical machine with a used

physical machine to check the difference of wear and tear

features in the two machines. It worth noting that Linux OS is

often not installed on personal computer. Hence, we can only

collect used Linux machine features from Linux server or IoT

devices. Not like personal computer, Linux servers are usually

used inside enterprise and IoT devices are often adopted in

institute or family. For both of the two situations, features are

hard to collect for privacy reason. To tackle this problem, we

TABLE VII
WEAR AND TEAR DIFFERENCE BETWEEN THE TWO MACHINES

Category Features New Machine Used Machine

Wear-and-Tear

Log File 7 3

Process 1 0

TCP Connection 1 0

Date 3 1

produce a used machine by ourselves. In the first experiment,

we install Ubuntu 18.04 on both of the two physical machines.

The new machine keeps its state until one month later. Another

one is equipped with frequently-used services such as SSH,

HTTP, FTP, DNS and MySQL, accessed by three humans

randomly for a month. After one month, we run the detecting

tool to check wear and tear features. If the statistic counts

of logs, process and TCP connection trigger the threshold, the

corresponding value of wear and tear features will be added by

a value. The values represent the likeliness of being a machine,

which recovers its OS frequently. Results are shown in Table.

VII.

As is shown in Table. VII, the feature data collected from the

detecting tool is quite distinguishable. By randomly accessing

for a month, we find that the secure log, message log, HTTP

access log and MySQL log of used machine have grown fast,

counts of which are much higher than the new one. Besides,

process counts and TCP connections counts surpass the new

one a bit. The last login date keeps in a week. The installation

date and update date remain a month ago.

Then, we compare other features from the rest 5 aspects

in multiple environments including physical machine, virtual

machines and sandboxes. In this experiment, we install Ubuntu

18.04 on every machine. We choose 3 famous virtual machine

platforms: VMware, VirtualBox and QEMU as representatives

of virtual machines. Cuckoo [21], Limon [22] and Lisa [18] are

three popular open-source sandboxes widely used to analyze

Linux malwares, which can be of great representative for

comparison. The Infrastructure in our experiment is featured

with Intel(R) Core(TM) i5-8300H CPU @ 2.30GHz x 8

and 16GB memory. Based on the infrastructure, the virtual

machines are configured with 4 vCPUs and 8GB memory.

For sandboxes, the guest machines to analyze samples are

configured with 1 vCPUs and 4GB memory. Specifically,

we run this environmental detecting tool and observe the

output collected from multiple environments. The detecting

tool checks each item of features. If any item triggers the

rule, a value will be added to the statistical data of this feature.

These values represent the likeliness of being a sandbox. The

results are summarized in Table. VIII.

By comparing physical machine with virtual machines,

we find that features show great differences in sensitive

processes because virtual machines tend to deploy daemon

processes for the convenience of platform control. Due to

some special configs in virtual machines, hardware strings

673

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:46 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII
OTHER DIFFERENCES OF ENVIRONMENTAL FEATURES

Features Physical Machine
Virtual Machines Sandboxes

VMware VirtualBox QEMU Cuckoo Lisa Limon

Process 0 4 6 1 8 3 7

Hardware 0 8 10 8 10 8 8

Network 0 0 0 0 0 2 0

Tracing 0 2 2 2 3 3 3

Pattern 0 0 0 0 1 1 0

and kernel debugging files vary a lot too. While we compare

virtual machines with sandboxes, features also show great

differences in sensitive processes in that sandboxes tend to

deploy monitoring processes for tracing in addition to virtual

machine daemon processes. Cuckoo sandbox adopts systemtap

to track sample, TCPDUMP to get traffic data, INetSim to

emulate network status and “cuckoo” as the default hostname.

Lisa sandbox uses systemtap and TCPDUMP but uses “an-

alyzed bin” as sample name. Limon sandbox utilizes sysdig

and strace to trace sample, tshark and TCPDUMP to get and

analyze traffic data and INetSim to disguise network protocol.

In conclusion, this tool is able to faithfully tell the discrepancy

among physical machine, virtual machines and sandboxes.

B. Effectiveness of Reinforcing Method

To evaluate the effectiveness of the reinforcing method,

we firstly focus on the components of the three open-source

Linux sandbox. As shown in Tabel. IX, Cuckoo and Lisa

use Systemtap as their tracer and Limon adopts Strace and

Sysdig as its tracer. For Cuckoo, this sandbox maintains a

white list to rule out irrelevant process. Except for white list,

all behavoirs of other processes in OS will be recorded. This

method monitors the changes in OS caused by samples to

a large extent, but brings false positive due to the behaviors

of irrelevant processes. For Lisa, this sandbox tracks sample

processes by hooking fork and clone syscall but ignore the

possibility of process injection. For Limon, this sandbox

uses strace to track samples, which could be detected by

TRACE ME parameter of ptrace syscall. To mitigate these

limitation, we adopt process creating and ptrace call as our

target. This method brings no false positive and tracks the

behavoirs of target as much as possible.

Then, we shift to focus on the effectiveness of filter and

emulator. We compare three popular open-source Linux sand-

boxes before and after reinforcement from the 6 aspects fea-

tures. In this experiment, physical device configuration, virtual

machine platform configuration and OS configuration are same

as those in Section IV-A. We divide machines to be tested into

two groups: sandboxes before and after reinforcement. The

machines in the first group are installed normally according

to the official documentation. Besides normal installation,

machines in another group are pre-deployed with target tracer,

features filter and features emulator. By running the detecting

Fig. 4. Average Environmental features before and after reinforcement.

tool in multiple environments, we get the results. To make

the results intuitive, we adopt the average value of three

sandboxes, shown in Fig. 4.

As we can see from Fig. 4, the features collected by this

tool show great discrepancy. After reinforcement, most of the

features are hidden from the tool by pre-deployed modules.

Process features and tracing features disapear by filter. Net-

work accessibility is successfully disguise by emulator. As for

other features, most of them drop down to a very low level.

Here is the reason why there exist several features hard to

hide. For wear and tear features, installation date and update

date are hard to disguise because these two features depend

on filesystem. For hardware features, blocks of disk are hard

to hide in that these features rely on disk status. For particular

patterns, the processname in /proc/self/status and /proc/self/s-
tatus are hard to redirect due to the difficulty of changing state

of process. Even though, this method is able to hide most

of these features from six aspects and effectively reinforce

sandboxes against environmental-sensitive malware, making

the environment indistinguishable from normal systems.

C. Qualitative comparison with other countermeasures

There exist some efforts against environmental-sensitive.

Some researchers aim at activating environmental-sensitive

674

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:46 UTC from IEEE Xplore. Restrictions apply.

TABLE IX
COMPONENTS OF THREE LINUX SANDBOX

Sandbox Supported Architecture Default OS Tracer Traffic Capture Network Emulator

Cuckoo QEMU/VMWare/VirtualBox/ESX/Xen/AVD/KVM Ubuntu Systemtap TCPDUMP INetSim

Lisa QEMU Ubuntu Systemtap TCPDUMP /

Limon VMWare Ubuntu Strace&Sysdig TCPDUMP&Tshark INetSim

malware. Symbolic execution can obtain feasible inputs and

execute specific regions of codes. Forced execution can tra-

verse possible paths of a program to explore all branches of

a program. These two methods are proved effective in the

lab, but both of them have some inherent flaws. On the one

hand, those two methods have heavy time costs for they need

to traverse part or all of the branches of a program instead

of executing a specific branch once. On the other hand, the

monitoring modules are not easy to cooperate with traversing

progress as the order of collected information is perturbed by

process state resetting. For instance, the sequence of network

traffic is significant, which represents specific network behav-

ior. However, if we traverse a program to entail it to expose

more behavior, the process state recovers to the previous node

so that it can explore another branch, which makes the order of

traffic information after this node descends into chaos because

both of the two statuses are recorded. Some researchers

try to utilize multiple environments to execute samples to

induce their behavior, which is resource-consuming. To make

sure malware shows its behavior as rich as possible, various

environments need to be preinstalled in emulators. In addition,

due to unknown tactics of malware, this method cannot cover

all possible methods to evade detection. By contrast, our

method analyzes statistical data from actual behavior and finds

common behaviors to detect the environment and only execute

once.

V. LIMITATION AND DISCUSSION

Through the results of these experiments, we conclude that

EnvFaker is able to reinforce sandbox. However, this method

is not a complete reinforcing solution against environmental-

sensitive malware, but an indispensable supplement for sand-

box.

Firstly, Samples using discrepancy of specific instructions

such as RedPill and cpuid can still detect the sandbox. Func-

tion hooking techniques are hard to apply to this situation.

Virtual machine API offer some feasible ways to modify

hardware information. But that should be configured out of

virtual machine. In addition, using the difference of TSC timer

can detect sandbox too, which is related to VM mechanism

and of great complexity to avoid. Our method tries to mitigate

the probability of being detected as possible as we can. The

second limitation is the counts of wear and tear features.

There are so many features in files or software in Linux OS

representing the level of wear and tear, some of which are even

encrypted such as /var/log/lastlog, some of which are related

to installation time of filesystem such as latest updating time

of system. Our method chooses representative wear and tear

features to hook. Thirdly, network emulation is a double-edged

sword. By network emulation, some malwares using C&C are

induced to expose malicious behaviors indeed. However, these

malwares can detect the emulation by connecting to a definite

non-existing network device deliberately. It seems to be an

insoluble problem in dynamic analysis. Luckily, this is just a

hypothesis because we have not found any Linux malware of

that type for now. We seek to deal with these issues in the

future.

VI. RELATED WORK

Security workers traditionally analyze unknown malware

samples by virtual machine or sandbox, which give them

an overview of malicious behaviors. So, malware authors

try their best to make analysis process hard by equip the

malware with detecting module to check if they are in sandbox.

Under this situation, some researchers have found several VM-

detection and sandbox-detection methods. In addition, several

countermeasures have been proposed against environment-

sensitive malwares.

VM-Detection Methods. T Raffetseder et al. [4] analyzed the

possibilities to detect system emulators. Some known attacks

against widely used virtual machine, such as Red-Pill [23]

and LDT check were described by P Ferrie [24] . Xu Chen

et al. [2] developed a detailed taxonomy of malware defender

fingerprinting methods. An automatic technique to generate

red-pills for detecting if a program is executed through a CPU

emulator was proposed by RPaleari et al. [25] L Martignoni

et al. [26] presented a testing methodology for CPU emulators

based on fuzzing. Two method of artifacts and instruction

emulation were concluded by O Bazhaniuk et al. [27].

Sandbox-Detection Methods. Paul Jung [28] introduced

common sandboxes detection tricks used in the wild by

malwares. Black-box technique to efficiently extract emulator

fingerprints without reverse-engineering was proposed by J

Blackthorne et al. [11] A Yokoyama et al. [1] introduce

SandPrint, a program that measures and leaks characteristics

of Windows-targeted sandboxes. A class of sandbox evasion

techniques that exploit the wear-and-tear that inevitably occurs

on real systems as a result of normal use was presented by N

Miramirkhani et al. [3]

Anti-detection Methods. A system that allows us to explore

multiple execution paths and identify malicious actions that

are executed only when certain conditions are met were

proposed by A Moser et al. [29] J Wilhelm, T Chiueh et al.

[30] described a system named Limbo that features a forced

675

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:46 UTC from IEEE Xplore. Restrictions apply.

sampled execution approach to traverse the driver’s control

flow graph. An automated technique to dynamically modify

the execution of a whole-system emulator to fool a malware

sample’s anti-emulation checks was proposed by MG Kang

et al. [31] M Lindorfer et al. [6] proposed a technique for

detecting malware samples that exhibit semantically different

behavior across different analysis sandboxes. A new VM-

aware detection scheme, namely Divergence Detector was

proposed to address the swindle of the evolved malware by

CW Hsu et al. [7] K Liu et al. [10] proposed a fingerprints

randomization methodology to exploits hooking techniques

to defeat sandbox-aware malware. A binary analysis engine

named X-Force was introduced to explores different execution

paths inside the binary by F Peng et al. [32] O Ferrand [5]

try to prevent malware to detect that they are under analyze

with a few modifications and tricks on Cuckoo and the virtual

machine. F Besler et al. [33] introduced countering sandbox

evasion techniques used by malware. A system UBER for

automatic artifact generation based on the emulation of real

user behavior was proposed by P Feng et al. [9] W You et al.

[34] proposed a memory pre-planning scheme before the real

execution to practice forced execution.

VII. CONCLUSION

In this paper, we present EnvFaker, an effective method

to reinforce sandbox against environmental-sensitive malware.

Unlike traditional work, our method focuses on Linux sand-

box. Based on previous work and characteristics of Linux

OS, we analyze thousands of Linux ELF samples. We filter

out improper features and extract several new features of

Linux OS and summarize these features from 6 aspects to

detect Linux sandbox. Given these, we make use of these

features to implement a method to prevent malwares from

detecting environmental features by target tracer, features filter

and features emulator. To prove the effectiveness of these

features, we implement a tool to show the discrepancy of

the new and used physical machine and the difference among

physical machine, virtual machines and sandboxes. To evaluate

our method, we use the tool to detect features in sandboxes

before and after reinforcement. The experiment shows that our

method can effectively reinforce existing Linux sandboxes.

ACKNOWLEDGMENT

We would like to thank our mentor and other teammates. In

the thesis work, Professor Weiping Wen provides great guid-

ance from paper writing to research direction. We appreciate

that every person in our research team gives us help as much

as possible, not only in experiments but also in mind. Besides,

we would like to express thanks to VirusTotal and VirusShare

for their kindness in sharing malware samples. This work has

been partly supported by NSFC 61872011.

REFERENCES

[1] A. Yokoyama, K. Ishii, R. Tanabe, Y. Papa, K. Yoshioka, T. Matsumoto,
T. Kasama, D. Inoue, M. Brengel, and M. Backes, “Sandprint: Finger-
printing malware sandboxes to provide intelligence for sandbox evasion,”
in International Symposium on Research in Attacks, Intrusions, and

Defenses. Springer, 2016, Conference Proceedings, pp. 165–187. I,
II, VI

[2] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards
an understanding of anti-virtualization and anti-debugging behavior in
modern malware,” in 2008 IEEE international conference on dependable
systems and networks with FTCS and DCC (DSN). IEEE, 2008,
Conference Proceedings, pp. 177–186. I, VI

[3] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis,
“Spotless sandboxes: Evading malware analysis systems using wear-and-
tear artifacts,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, Conference Proceedings, pp. 1009–1024. I, II, VI

[4] T. Raffetseder, C. Krügel, and E. Kirda, “Detecting system emulators,”
in International Conference on Information Security, 2007. I, VI

[5] O. Ferrand, “How to detect the cuckoo sandbox and to strengthen it?”
Journal of Computer Virology and Hacking Techniques, vol. 11, no. 1,
pp. 51–58, 2015. I, VI

[6] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting
environment-sensitive malware,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2011, Conference Proceed-
ings, pp. 338–357. I, VI

[7] C.-W. Hsu and S. W. Shieh, “Divergence detector: A fine-grained
approach to detecting vm-awareness malware,” in 2013 IEEE 7th In-
ternational Conference on Software Security and Reliability. IEEE,
2013, Conference Proceedings, pp. 80–89. I, VI

[8] X. Jia, G. Zhou, Q. Huang, W. Zhang, and D. Tian, “Findevasion: an
effective environment-sensitive malware detection system for the cloud,”
in International Conference on Digital Forensics and Cyber Crime.
Springer, 2017, Conference Proceedings, pp. 3–17. I

[9] P. Feng, J. Sun, S. Liu, and K. Sun, “Uber: Combating sandbox evasion
via user behavior emulators,” in International Conference on Information
and Communications Security. Springer, 2019, Conference Proceedings,
pp. 34–50. I, VI

[10] L. Ke, L. Shuai, and C. Liu, “Poster:fingerprinting the publicly available
sandboxes,” ACM, 2014. I, VI

[11] J. Blackthorne, A. Bulazel, A. Fasano, P. Biernat, and B. Yener,
“Avleak: fingerprinting antivirus emulators through black-box testing,”
in 10th USENIX Workshop on Offensive Technologies (WOOT 16), 2016,
Conference Proceedings. I, II, VI

[12] V. Total, “Virustotal-free online virus, malware and url scanner,” Online:
https://www. virustotal. com/en, vol. 2, 2012. II

[13] J.-M. Roberts, “Virus share,” Automatic Analysis of Malware Behaviour
using Machine Learning, 2014. II

[14] G. Combs, “Tshark—dump and analyze network traffic,” Wireshark,
2012. II, III

[15] D. A. Joseph, V. Paxson, and S. Kim, “tcpdump tutorial,” University of
California, EE122 Fall, 2006. II

[16] F. C. Eigler and R. Hat, “Problem solving with systemtap,” in Proc. of
the Ottawa Linux Symposium. Citeseer, 2006, Conference Proceedings,
pp. 261–268. II

[17] D. Kennedy, J. O’gorman, D. Kearns, and M. Aharoni, Metasploit: the
penetration tester’s guide. No Starch Press, 2011. II

[18] D. Uhrıcek, “Lisa–multiplatform linux sandbox for analyzing iot mal-
ware,” 2020. II, IV-A

[19] D. Cortesi, “Pyinstaller manual,” Online]. Disponible en
https://pyinstaller. readthedocs. io/en/stable/[Último acceso el 17
de noviembre de 2020]. II

[20] T. Hungenberg and M. Eckert, “Inetsim: Internet services simulation
suite,” Internet, 2014. III-C

[21] D. Oktavianto and I. Muhardianto, Cuckoo malware analysis. Packt
Publishing Ltd, 2013. IV-A

[22] K. Monnappa, “Automating linux malware analysis using limon sand-
box,” Black Hat Europe, vol. 2015, 2015. IV-A

[23] J. Rutkowska, “Redpill: Detect vmm using (almost) one cpu instruction,”
http://invisiblethings. org/papers/redpill. html, 2004. VI

[24] P. Ferrie, “Attacks on virtual machine emulators,” 2007. VI

[25] R. Paleari, L. M. Giampaolo, F. Roglia, and D. Bruschi, “A fistful of red-
pills: How to automatically generate procedures to detect cpu emulators,”
harvard theological review, 2009. VI

[26] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi, “Testing cpu
emulators,” in Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, ISSTA 2009, Chicago, IL, USA, July
19-23, 2009, 2009, Conference Proceedings. VI

676

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:46 UTC from IEEE Xplore. Restrictions apply.

[27] O. Bazhaniuk, Y. Bulygin, A. Furtak, M. Gorobets, J. Loucaides,
and M. Shkatov, “Reaching the far corners of matrix: generic vmm
fingerprinting,” SOURCE Seattle, 2015. VI

[28] P. Jung, “Bypassing sanboxes for fun!” in Bot Conf, 2014, Conference
Proceedings. VI

[29] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in 2007 IEEE Symposium on Security and Privacy
(SP’07). IEEE, 2007, Conference Proceedings, pp. 231–245. VI

[30] J. Wilhelm and T.-c. Chiueh, “A forced sampled execution approach to
kernel rootkit identification,” in International Workshop on Recent Ad-
vances in Intrusion Detection. Springer, 2007, Conference Proceedings,
pp. 219–235. VI

[31] M. G. Kang, H. Yin, S. Hanna, S. McCamant, and D. Song, “Emulating
emulation-resistant malware,” in Proceedings of the 1st ACM workshop
on Virtual machine security, 2009, Conference Proceedings, pp. 11–22.
VI

[32] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force:
Force-executing binary programs for security applications,” in 23rd
USENIX Security Symposium (USENIX Security 14), 2014, Conference
Proceedings, pp. 829–844. VI

[33] F. Besler, C. Willems, and R. Hund, “Countering innovative sandbox
evasion techniques used by malware,” in 29th Annual FIRST Conference,
2017, Conference Proceedings. VI

[34] W. You, Z. Zhang, Y. Kwon, Y. Aafer, F. Peng, Y. Shi, C. Harmon,
and X. Zhang, “Pmp: Cost-effective forced execution with probabilistic
memory pre-planning,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, Conference Proceedings, pp. 1121–1138.
VI

677

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:46 UTC from IEEE Xplore. Restrictions apply.

