
774

2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

2324-9013/21/$31.00 ©2021 IEEE
DOI 10.1109/TrustCom53373.2021.00112

202 1 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

VulChecker : Achieving More Effective Taint

Analysis by Identifying S anitizers Automatically

Xiarun Chen
School of Software and

Microelectronics
Peking University

Beijing, China
xiar _ c@pku.edu.cn

Qien Li
Digital Star Technology Co.

Sichuan, China
liqien@pku.edu.cn

Zhou Yang
School of Software and

Microelectronics
Peking University

Beijing, China
yzss20 19@pku.edu.cn

Yongzhi Liu
School ofSoflware and

Microelectronics
Peking University

Beijing, China
lyz _ cs@pku.edu.cn

Shaosen Shi
School of Software and

Microelectronics
Peking University

Beijing, China
deadpoo3@pku.edu.cn

Chenglin Xie
School of Software and

Microelectronics
Peking University

Beijing, China
cony 1 996@pku.edu.cn

Weiping Wen
School of Software and

Microelectronics
Peking University

Beijing, China
weipingwen@pku.edu.cn

Abstract-The automatic detection of vulnerabilities in Web
applications using taint analysis is a hot topic. However, existing
taint analysis methods for sanitizers identification are too simple
to find available taint transmission chains effectively. These
methods generally use pre-constructed dictionaries or simple
keywords to identify, which usually suffer from large false
positives and false negatives. No doubt, it will have a greater
impact on the final result of the taint analysis. To solve that, we
summarise and classify the commonly used sanitizers in Web
applications and propose an identification method based on
semantic analysis. Our method can accurately and completely
identify the sanitizers in the target Web applications through
static analysis. Specifically, we analyse the natural semantics and
program semantics of existing sanitizers, use semantic analysis to
find more in Web applications. Besides, we implemented the
method prototype in PHP and achieved a vulnerability detection
tool called VuiChecker. Then, we experimented with some
popular open-source CMS frameworks. The results show that
Vulchecker can accurately identify more sanitizers. In terms of
vulnerability detection, VuiChecker also has a lower false
positive rate and a higher detection rate than existing methods.
Finally, we used VuiChecker to analyse the latest PHP
applications. We identified several new suspicious taint data
propagation chains. Before the paper was completed, we have
identified four unreported vulnerabilities. In general, these
results show that our approach is highly effective in improving
vulnerability detection based on taint analysis.

Keywords-vulnerability detection, taint analysis, sanitizers

identification , security check

I. INTRODUCTION

Web applications play an extremely important role in the
Internet ecosystem, and their security issues are equally far­
reaching [1] . Among the many security risks, taint-type
vulnerabilities are one of the most prevalent and threatening
types. This category of vulnerabilities usually refers to security
risks caused by malicious external inputs, such as SQL

2324-901 3/211$3 1 .00 ©202 1 IEEE
DOl 1 0. 1 109/TrustCom53373.2021 .001 12

774

injection, XSS, etc. In recent years, many methods have been
proposed by researchers to analyse Web applications to detect
taint-type [2] vulnerabilities . Among them, static code analysis
has been widely studied because of its efficiency benefits [3-5] .
This method can get the structure and characteristics of the
applications without running and thus analysing potential
security risks. Among the many static analysis methods, the
method based on taint analysis [6, 7] is a hot research topic . It
tracks the flow of data in a program and analyses the source
and propagation of data to determine if there is a security risk.
This method models the source and use of data, which is
similar to the approach used when manually auditing code to
find vulnerabilities . However, the static taint analysis methods
also suffer from a high rate of false positives [8] . In the current
research on taint analysis, researchers focused more on solving
the analysis problem of alias propagation [9- 1 1] . These taint
analysis methods analyse whether data can be transmitted
directly from the taint source to the taint aggregation point
without going through sanitizers, where sanitizers are used to
process the tainted data in order to remove sensitive
information or dangerous data. As an important component of
taint analysis, sanitizer is also an important influence of taint
analysis results [12] . Among these existing methods of
sanitizers identification, library function dictionaries [4, 6] and
keyword matching [13] are commonly used. However, the
development of Web applications is complex and changeable.
It is difficult to identify a valid set of keywords for the
effective identification of sanitizers. In other words, the
existing identification methods may have many misses and
false positives, and this can further affect the accuracy of the
vulnerability detection results.

It is worth noting that the identification of sanitizers is not
only relevant for taint analysis. A more accurate identification
method can be applied to many aspects of program analysis
and security management. One example is the identification of
irregularities in data inspection. Combining the identification

20
21

 IE
EE

 2
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 T
ru

st
, S

ec
ur

ity
 a

nd
 P

riv
ac

y
in

 C
om

pu
tin

g
an

d
Co

m
m

un
ic

at
io

ns
 (T

ru
st

Co
m

) |
 9

78
-1

-6
65

4-
16

58
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

TR
U

ST
CO

M
53

37
3.

20
21

.0
01

12

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:24 UTC from IEEE Xplore. Restrictions apply.

775

of sanitizers with statistical methods, it is possible to find out
which security checks are imperfect [14] . In addition to this, by
identifying sanitizers we can guide fuzzing to better trigger
critical questions [1 5 , 16] . Identifying sanitizers can focus the
program analyst or security inspector, selectively concentrating
on a certain set of targets that are more likely to be threatened,
thus improving the efficiency and accuracy of each task [1 7] .

I n this paper, we focus on the identification o f sanitizers in
taint analysis, and propose more effective methods for
vulnerability analysis. To do this, we summarise and categorise
several types of commonly used sanitizers by analysing a large
number of open-source Web applications . And we also carry
out a semantic modeling analysis of these sanitizers. In
addition, we design a sanitizers identification method based on
semantic analysis. Firstly, we use natural semantic analysis to
obtain the set of suspected sanitizers. Secondly, we combine
data flow analysis and control flow analysis to obtain the
program semantics, filter and further confirm the elements in
the suspicious set. Finally, we get a more accurate set of
sanitizers. We implemented method prototypes in PHP code
and analysed popular CMS frameworks. By the time the paper
was completed, we had identified four unreported
vulnerabilities.

To summarize, we make the following contributions :

1 . We analyzed the top 30 Web applications with the most
stars in Github [1 8] and compiled the defenses against taint­
type vulnerabilities in them. We defined, categorised and
classified these sanitizers and described them using a semantic
model. We hope that this work will inform the design of
subsequent sanitizers identification methods and provide
inspiration for developers to build secure defences.

2 . We propose a method to identify sanitizers based on
semantic analysis. Through this method, we can perform fast
and accurate identification of sanitizers in Web applications,
thus providing a basis for vulnerability detection.

3 . We implemented a prototype of the method on PHP code
and implemented a vulnerability detection tool (VuiChecker) .
By compared Vulchecker with popular vulnerability detection
methods, we can see that our method can identify more
sanitizers. In addition, VuiChecker has a lower false positive
rate and a higher detection rate for vulnerability detection.

II . BACKGROUND AND RELATED WORK
A. Vulnerability detection technology based on taint analysis

Among program analysis techniques, taint analysis is an
important tool for analysing code vulnerabilities and detecting
attack methods [1 9-22] . It has a very wide range of
applications in automated vulnerability detection. In
vulnerability detection, we mark the data (usually external
input from the program) as tainted data and then track the flow
of it [6] . By doing this, we can see if the tainted data affects
critical program operations and detect program vulnerabilities .

Taint analysis can be abstracted into a triad of <sources,
sinks, sanitizers> .

775

Source: The source of the taint, which represents the direct
introduction of untrusted data or confidential data into the
system [23] .

Sink: A taint aggregation point, which represents an
instruction that can directly generate dangerous operations or
compromise private data to the outside world [24] .

Sanitizers: They sanitise data by encrypting or removing
compromising operations so that the data is no longer
compromising to the application [25] .

Using the abstract definition above, we can generalise the
process of vulnerability detection based on taint analysis. It
analyses whether data introduced by a taint source in a
program can be propagated directly to the taint aggregation
point without sanitizers. If it cannot, it indicates that the system
has a high probability of being secure. Otherwise, it indicates
that the system may have security problems .

As shown in Fig. 1 , taint variable 1 reaches the taint
aggregation point via taint propagation. Which indicates that
there may be a problem here. Taint variable 2, on the other
hand, undergoes sanitizers in taint propagation and cannot
reach the taint aggregation point directly, so this data stream is
safe.

Fig. 1 . The process of taint analysis to detect vulnerabilities.

From Figure 1 we can see that the key to taint analysis­
based vulnerability detection methods is the analysis of data
propagation. In this part, the analysis for direct assignment
propagation and function call propagation is more mature.
Researchers are currently focusing on the analysis of alias
propagation. However, as we can see from Figure 1 , the impact
of sanitizers on the results of the entire propagation chain
cannot be ignored. Therefore, the identification of sanitizers is
equally important.

B. Sanitizers and recognition technology in taint analysis

Sanitizer is an application protection mechanism used by
developers [26] . It processes data so that the data no longer
carries sensitive data or is no longer harmful to the applications.
In taint analysis, taint marks are removed when the tainted data
passes through the sanitizers. Effective sanitizers identification
during vulnerability detection can reduce the amount of tainted
data and increase efficiency. Also, it can avoid the problem of
inaccurate analysis results due to taint proliferation.

Among the existing taint analysis methods, the sanitizers
generally used include two categories [25] .

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:24 UTC from IEEE Xplore. Restrictions apply.

776

Data encryption functions [27] : In Web applications,
developers often encrypt important data in order to prevent
sensitive data. Encrypted data is usually difficult to extrapolate
and no longer threatening, so researchers often identify this
class of functions as sanitizers.

Input validation functions : For Web applications, external
input data can be harmful to the application by carrying
dangerous operations. To defend against such hazards,
developers often use some validation functions. In line 9 of the
code in Fig. 2, the developer uses the "htmlspecialcharsO"
function to validate the input of "name", This function encodes
the HTML tags in the data, thus defending against XSS
vulnerabilities . In taint analysis, these functions are also
identified as sanitizers. In this section, in addition to the input
validation library functions that come with the programming
language, some systems provide additional input validation
tools, such as ScriptGard [28] , CSAS [29], XSS Auditor [30],
BEK [3 1] . These tools are also regarded as sanitizers.

In existing studies on sanitizers, researchers have focused
on the effectiveness of sanitizers [2,33,34] and how to
automate their placement [35] . But the identification for
sanitizers has been less studied.

1 < ? php
2
3 I I Is there any input?

4 "' if(array_key_exists (" name " , $_GET) && $_GET[' name '] ! = NULL) {
5 // Check Ant i - CSRF token

checkToken ($_REQUEST[' u ser_token '], $_SESSION (' sess ion_token '], ' i ndex . ph p ') ;
II Get input

$ name = htmlspecialchars($_GET[' name ']) ;
10
11 I I Feedback for end user

12 $html ... " < pre>Hello ${name}</pre > " ;
13 }
14
15 // Generate Anti - CSRF token

16 generateSes s ionToken () ;
17
18 ?>

Fig. 2. Example of using a library function as a sanitizer in DVWA[32] .

Through our research, we found that the sanitizers in
current taint analysis are generally functions. And in terms of
identification methods for sanitizers, researchers often use pre­
constructed dictionaries of library functions [4, 6] or
collections of keywords [13] for identification. For example, in
paper [13] , when using taint analysis for vulnerability detection
in OpenMRS, the researchers construct dictionaries by
collecting the filter functions provided by Hibernate.

As can be seen, both in terms of the semantic level of
sanitizers(generally functions) used today and in terms of
identification methods, the sanitizers identification methods
used in current taint analysis methods are relatively simple.
Although these methods can be useful, there are still major
problems in terms of accuracy. In addition to using the library
functions as sanitizers, developers are increasingly custom
sanitizers. Existing identification methods struggle to cope
with the increasing complexity of Web application
development. There is no way to ever guarantee developer
habits, so these sanitizers are often difficult to match using a
particular character rule.

Furthermore, in addition to function-level sanitizers,
security check statements in Web applications should not be
ignored. Such checks may be present within any function in the

776

code, such as the security check branch statement on line 10 of
the code in Fig. 3. Security checks can also have the same
effect as input validation functions. However, in existing taint
analysis, this type of security check is often difficult to identify
accurately and even ignored.

1 < ? php
2
3 I I Security check function
4 " function safecheck ($ strstr){
5 if(preg__match (ft / select /union / prepare / s et / update/delete /drop/ insert /where / \ . / i ft , $strstr)) {
6 die (' no hacker ! ') ;
7
8 }
9

10 II The function to excute sqL
11 "' function excutesql($name) {
1 2 $ s q l = " select * from ' users' where name "' ' $name ' ; " ;
13 $res .. $db- >mysqli query($sq l) ;
1 4 return $res;

-

1 5 }
16
17 $name = $_GET [' name ' J ;
18
19 II Sonitize nome input
20 safecheck($name) ;
2 1 var_dump(excutesql($name)) ;
22
23 v if(isset($_GET [' inject '])) {
24
2 5 Sid = $_GET (' inject '] ;
26
27 II Sanitize inject input
28 if(preg_match (M / select /union / prepa re/set/ update/delete /drop/ insert /where / \ . /i H , S i d)) {
29 die (' no hacker ! ') ;
30 }
31 I I SpL i ce and excute sqL

32 $sql = " select * from · words· where id = ' $ id ' ; " ;
3 3 $res "' $db- >mysqli_query($sql) ;
3 4 var_dump ($res) ;
3 5 }
36
37 h

Fig. 3. Example of using a security check as a sanitizer.

In summary, we found the following problems with
existing sanitizers and identification methods :

(1) Most of the sanitizers collections currently in use are
library functions. This collection contains the encryption and
input validation functions that come with the programming
language library. However, such collections cannot include
custom functions, which can lead to certain false positives .

(2) To extend the sanitizers functions, researchers use
keywords to identify more sanitizers functions. Bug such a
simple approach tends to introduce larger false positives and
misses. On the other hand, the keyword matching approach is
difficult to identify security checks.

To deal with challenge (1), we analysed the top 30 Web
applications on Github with most stars. By summarising the
taint-type vulnerabilities and sanitizers in these open source
applications, we describe the sanitizers with natural and
program semantics. This will serve as the basis for designing
an automatic identification method. To address challenge (2),
we designed a semantic analysis-based approach to identify
sanitizers. It combines natural semantic analysis with program
semantic analysis to identify sanitizers in Web applications . By
building a semantic model, we can identify sanitizers not only
at the function level but also at the statement level, such as
security checking branch statements.

Ill . SUMMARY AND ANALYSIS OF SANITIZERS

To design the automatic identification method, we analysed
the source code of the top 30 Web applications with the most
stars on Github. We summarised the sanitizers in these
applications. By determining whether the instructions directly
modify the data, we divided them into two categories: data
transformations and security checks :

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:24 UTC from IEEE Xplore. Restrictions apply.

M M Ci

M Ci ൌ
ܪܵ Security handing instructions
ܪܰ ݎ݈ܽݑܴ݃݁ ݏ݊݋݅ݐܿݑݎݐݏ݊݅

∃Ci Such That M Ci ൌ SH
and

∃Cj, Where i ് j, Such That M Cj ൌ NH

777

A. Data transformation
Web application developers often process data when it is

difficult to confirm the security of the user's input method. The
program allows some of the input data to contain illegitimate
characters, and the data is transformed in the subsequent
process to ensure security. We have summarised the data
transformations into four types of operations.

a) Substitution: As data flows through a program, it is
necessary to ensure that the data is separated from the code.
Therefore, developers often use substitution operations to
replace sensitive characters in the data. This operation involves
replacing a character with another string of characters and
replacing a character with a null (delete) . For example, when
preventing directory traversal, we can replace the string " . .!"
string with a null character.

b) Splicing: To ensure data is secure and controllable,
developers often splice other data at the front or end of the data.
For example, to prevent file inclusion vulnerabilities, we could
splice a path before the original file name or splice a type
suffix.

c) Escape: In Web application development languages,
some characters play a special role. Some characters can
truncate statements, close forward data, or even execute
commands. For example, the backquote ' ' ' in PHP has the
same effect as the ' execO ' function. Developers often use
escape operations for strings. It removes the special meaning of
a character and escapes it to a harmless character.

d) Decoding: This operation also targets sensitive
characters, but it has a wider application than escaping. By
encoding, we can convert characters into a more secure form.
For example, to prevent XSS vulnerabilities, we can encode
"<>" to "<>".

For all four of these data transformations, Web applications
often implement them by calling functions . For example, the
"htmlspecialcharsO" function encodes the data into HTML
format. Therefore, it may seem reasonable to use the library
function dictionary for sanitizers recognition. In many cases,
however, developers prefer to implement more targeted data
transformation functions . It is difficult to match these custom
functions with a particular set of rules. In other words, existing
recognition methods are not accurate for data transformations.
Simple character matching methods are no longer adequate, It
is difficult to analyse custom data transformation functions in
new Web applications.

The naming rules for custom functions are not uniform
across different Web applications. However, we have found
that developer naming in a particular Web application often
follows a certain specification. This situation is due to the
internal specification requirements of the development team.
Therefore, it is necessary to use natural semantic analysis for
identification. On the other hand, we also found that these data
transformation functions have similar semantics. These
functions transform the data and return the transformed data.
And there are fewer statements in such functions other than
data transformations . So we can construct a semantic model of
these functions and identifY them in relation to the program
semantics.

777

B. Security Check
In addition to transforming the data directly, it is also

important to check the data. The developer needs to check the
input data to determine whether to continue with the program
process or to perform transformations on the data. By
analysing these existing Web application, we have divided the
security checking semantics into two layers. The first layer is
the check statement (conditional branching statement) and the
second layer is the security handling operation:

a) Check statement: This consists mainly of conditional
branch statements. The data characteristics are analysed in
order to select the subsequent branches to be executed. For
example, it analyses the data for dangerous strings to determine
whether continue to execute the code.

b) Security handling statement: By analysing the data, the
program selects a different branch for execution. If it is judged
to be normal, the program continues to be executed. If an
exception is judged to be present, then the safe handling
statement is executed.

Security handling in Web applications can be divided into
three categories : data transformations, exception handling
functions and exception return codes. Among them, exception
handling refers to the function that handles the abnormal
situation when the program runs. It can keep the program
running normally or protect the system from damage. For
example, it can interrupt a program or report an error.
Exception return codes are those that return certain characters
that mark the program as abnormal.

We have found that the purpose of the security check is to
identifY whether the input data is legitimate. Once a data
exception is caught, it is processed safely and if no exception
exists it is executed normally. Therefore, we construct a
semantic model of security checking. Assuming that the branch
statement is M , and using M(Ci) to denote a particular one of
the branches, the possible cases of the branch statement are :

M(C) = { SH Security handing instructions ' NH R egular instructions (l)
Then , M i s a Security Check if :

3 Ci Such That M(Ci) = SH
and (2) 3 Ci, Where i * j, Such That M(ca = NH

That is, a conditional statement is a security check if there
is at least one branch of the security handling statement and a
normal program branch in the branch.

Existing taint analysis is difficult to identifY security checks
accurately. These methods only recognise security checks with
a specific string in the function name, but not at the statement
level. As an example in Fig. 3, existing methods can identifY
the security check function on line 20 using keywords, but can't
identifY the security check statements on lines 23 to 3 5 . The
fact that such security checks are common in applications and
also means that the existing identification of sanitizers is
heavily underreported. It can be seen that such statements have
common semantic features, which means we can combine both

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:24 UTC from IEEE Xplore. Restrictions apply.

778

atural Semantics Analysis Program Semantic Analysis

Initial Sanitizers

Sanitizers

Suspicious Sanitizers Suspicious Sanitizers

Fig. 4. Process for the automatic identification of sanitizers.

natural semantic and program semantic to identifY security
checks, thus reducing the rate of misses.

IV. APPROACH TO IDENTIFY SANITIZERS

In the previous section, we have summarised the sanitizers
in Web applications and analysed the shortcomings of existing
identification methods . In this section, we describe our
approach to identifY sanitizers.

A. Approach Overview
The Fig. 4 shows the workflow of our approach. The entire

analysis process is divided into two parts: natural semantic
analysis and program semantic analysis. It is important to note
that, as seen in Section 4, there may be data transforms,
exception handling functions and exception return codes nested
within the security check. Therefore, for the identification of
security checks, we need to identifY these three kinds of
instructions first, and then identifY the security checks through
semantic analysis.

Natural semantic analysis : In this step, we perform a
preliminary identification of data transformations, exception
handling and exception return codes. The functions that come
with the programming language can be easily found in the
official documentation. In addition, for programming
specification reasons, custom functions often use the same
strings, such as "filter", "safe", etc. Therefore, we propose
automatic recognition based on natural semantic analysis. We
split the function names in the collected base function set and
obtain a new set of suspicious keywords based on negative
word splitting. This step aims to achieve an intelligent
construction of the suspicious keyword set. We can then
construct a more complete set of functions and statements for
the analysis target.

Program semantic analysis : Based on the semantic model
constructed in Section 4, we filter the data transformation
functions derived from the natural semantic analysis. We then
use the data transformations, exception handling and exception
return codes to identifY the security checks in the program.

778

B. Natural Semantics Analysis
Suspicious keyword sets are difficult to define humanly, so

identifYing suspicious functions by keywords alone will result
in a large number of false positives and misses. In addition, the
use of prefabricated keywords does not allow for automated
construction of keyword sets for emerging Web applications.

To solve this problem, we devised a method to generate
keyword sets automatically for specific Web applications . First,
we construct an initial set of keywords by splitting the
functions and statements that can be identified. Then we use
the keywords to fetch suspicious instructions in the application,
select feature fields for the suspicious set and generate a new
set of keywords.

A major challenge in building keyword sets is that some of
the most frequent segments may not be meaningful, such as
generic words like "to" and "get", which are commonly used
by developers . To solve this, we analysed the semantics of
sanitizers and found that sanitizers often carry some negative
semantic fragments (e.g. "error", "faif', etc.) . Therefore, we
select high-frequency words with negative semantics as the set
of keywords. The natural semantic analysis detection process is
divided into the following steps.

(1) We split the initial sanitizer set and using high­
frequency words with negative semantics as the keyword set.

(2) Analysing target Web application using the keyword set.
In this way, we can get the sanitizers set with the Web
application developers ' naming feature. Next, we perform a
new round of subdivisions of this set to construct the
suspicious keyword set.

(3) Finally, we analysis the Web application using the
suspicious keyword set. In this step, we will construct the set of
suspicious sanitizers.

C. Program Semantics Analysis
There are often some false positives in the results of natural

semantic-based recognition. Natural semantic analysis is also
unable to identifY Security checks. Therefore, we need to
combine program semantic analysis to further filter the results,

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:24 UTC from IEEE Xplore. Restrictions apply.

CSM

N N Rj
ϑ N Rj

D Di D NDi
Di N CSM

∃Di, Rj Such That Di ∈ ϑ N Rj
and

∃Rk, Where j ് k, Such That NDi ∈ ϑ N Rk

Di
Di N

N CSM
CSM

779

identifY the Security checks and add them to the final sanitizers
set.

1) Filtering of data transformations

We find that the data transformation functions used for
sanitizers often have similar semantic patterns. These functions
have fewer redundant statements other than the transformation
operations on the data, and the input values are strongly
correlated with the output values . We have defined the
semantic model for data transformation functions that fit the
characteristics of sanitizers :

• The input to the function, after propagation through
the statements within the function, must reach the
output of the function (the return value).

• The statements within the function should be directly
or indirectly related to the input value, and there is
no chain of data propagation within the function that
is unrelated to the input value.

Based on the above semantic model, we filter the data
transformation operations. The filtering method mainly uses
data flow analysis to obtain the semantic characteristics of the
suspect function. If the function is judged to satisfY the above
two conditions it is retained, otherwise it is removed. The
analysis process is as follows :

(1) Traversing the suspect function and analysing the data
flow graph of the function.

(2) Determine whether the function has a return value. If so,
the return value data propagation chain will be analysed, and if
not, the function is removed from the suspect set.

(3) Use backward data flow analysis to determine if the
return value is related to the input value. Delete if not relevant,
otherwise analyse other data propagation chains.

(4) Determine if there are other data propagation chains that
are unrelated to the data propagation chain of the input data. If
present then the function is judged not to be sanitizer, if not
then it is recorded as a sanitizer.

(5) Continue the analysis for the next suspect function.

2) Filtering of exception handling functions and exception
return codes

Both of these are mainly used for the subsequent
identification of security checks. By analysing the semantic
model of security checks, we can deduce their semantic model
in reverse. In a program, the exception handling function and
the exception return code used for the security check are
located in a branch of the conditional statement. So we can
filter them by determining whether they satisfY the semantic
model of security checks.

In this step, since we do not have the final set of security
checks at this point, we define a semantic model named CSM
which is similar to security check model in formula (2) .

We assume that the branch statement is N, N(Ra denotes a

particular one of the branch statements, and {) (N (Ri)) denotes

the functions and instructions used in this one branch. In

779

addition, we define the set containing these two classes of code
as D , Di as an element of D , and NDi as any instruction other
than Di . N satisfies CSM model if :

3 Di, Ri Such That Di E {) (N(Ri))
and (3) 3Rk, Where j =F k, Such That NDi E {J (N(Rk))

That is, if there is at least one branch contains Di and at
least one branch does not contain Di in a branch statement N ,
then N obeys CSM model. If the semantic environment of a
suspect function does not satisfY CSM model, it must not be an
exception handling function. It is worth clarifYing that this
definition cannot be used to determine an exception-handling
function or exception-returning code, but it can determine that
a code fragment is not either of these.

By using this definition, we can filter out false positives
from suspicious collections. To implement this, we need to
obtain the calling relationships of the suspicious elements in
the program. First, we need to analyse the control flow graph
of the obtained program and then analyse each suspicious
element in the collection. The process is as follows :

(1) Constructing a control flow graph of the program and
traversing the control flow graph.

(2) If a function or instruction in the suspicious set is found
to be called in a program, backtrack to find the parent
instruction.

(3) Determine if the parent instruction is a conditional
statement such as "JF' or "SWITCH'. If so, continue to check
the branch.

(4) Check each branch of the conditional statement to
determine if it matches the semantic model. If it does, the
suspect element will be retained; otherwise it will be deleted.

(5) Continue to analyse the next suspicious instruction call

3) identifYing Security Checks

Once the above identification has been completed, we can
identifY the security check statements in the program. This step
is similar to identifYing the exception handling functions. In
this step, we use the security check semantic pattern for
matching. The analysis flow is as follows :

(1) Construction of a control flow graph and traversal ofthe
control flow graph.

(2) If a data transform, exception handling or exception
return code is found to be used in a program, backtrack to find
the parent instruction.

(3) Determine if the parent instruction is a conditional
statement such as "IF' or "SWITCH'. If so, continue to check
the branch.

(4) Check each branch of the conditional statement to
determine if it conforms to the security check pattern. If it does,
the suspect element will be retained; otherwise delete it.

(5) Continue with the analysis ofthe next instruction.

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:24 UTC from IEEE Xplore. Restrictions apply.

R
F

780

V. IMPLEMENTATION

We have implemented a prototype of the above sanitizers
identification method in PHP and built a vulnerability detection
tool called VuiChecker, with reference to the method proposed
in [6] . Since the work in this paper focuses on sanitizers
identification, the specific implementation of the vulnerability
detection tool is not be presented. We now present some
interesting implementation details

A. Collecting the initial collection of sanitizers
We are implementing this on PHP, so the sanitizers we

need to collect are also PHP-related. The innocuous treatments
we collected consisted of three categories .

a) PHP library functions: we obtain the officially provided
sanitizers functions by reading the official PHP documentation.

b) Sanitizers in previous work: the work of previous
authors is very informative. We analysed the source code of
existing open source tools, including Rips [36] , Pixy [4] . We
will validate these sanitizers and place the more plausible ones
into our initial collection.

c) Sanitizers in Web applications: In our analysis of popular
PHP Web applications, we have also obtained several new
custom sanitizers. For this part, we prefer to select those that
are universal rather than unique to a particular Web application.

B. Grading the results
In previous work, we can see that researchers have

conducted a large number of studies on the security of
sanitizers. If sanitizer is ineffective, there may be security
problems in the data dissemination chain that we have ignored.
In other words, this will result in a high level of leakage. This
cannot be ignored in our detection methods either. In particular,
custom sanitizers undergo less actual validation than library
functions . Therefore, these sanitizers are more likely to be
problematic. To counter this, we rewrote the taint propagation
analysis results output and divide the results into three levels.

Rl Less likely problematic data propagation chains: We
classified data propagation chains that used library functions or
other elements from the initial sanitizers set as Rl .

R 2 Potentially problematic data propagation chains: Data
propagation chains without sanitizers from the initial set, but
use sanitizers that we subsequently identifY automatically. This
category we classifY as level R2.

R3 Data propagation chain without sanitizers: If there is a
taint propagation chain in the program that does not use any
sanitizers (both in the initial set and in the new set) , this chain
has a higher probability of being a security problem. We
classifY this as level RJ.

The classification of the detection results is not arbitrary
but takes into account the different security of the sanitizers in
the different collections. In addition, this classification is more
user-friendly. For developers, who often require a lower false
positive rate, the analysis can be done mainly for RJ. For
security researchers or testers, who often have more time to
audit code, auditing both R2 and RJ is necessary.

780

VI. EVALUATION

In this section, we evaluate the effectiveness of VuiChecker.
and compare the effectiveness of our sanitizers identification
with other tools. We use them to identifY sanitizers and
validate vulnerabilities in popular CMS frameworks. Finally,
we give four unreported vulnerabilities that we found.

A. Evaluating sanitizers identification
In this experiment, we analyse SeaCMS [37] . We selected

popular open-source PHP taint analysis tools for comparison
and analysed the number of sanitizers in the various methods.
In addition, we counted the accuracy of the identification by
manually verifYing the identified sanitizers.

The results are shown in the Table. I, Pixy and Rips use
library functions as sanitizers, so we only record the number of
sanitizers they use. The column sanitizers in the table indicate
the number of sanitizers identified in the results, and we can
see that our approach has a clear advantage in identifYing the
number of sanitizers . By using both natural and procedural
semantic recognition, VuiChecker is able to recognize both
sanitizer functions and statement-level safety checks, so it is
able to recognize more sanitizers than other methods.

TABLE I.

Tools

Pix� [4]
RiQS [36]

Phos [13]

VLL1Checker

RESULTS OF COMPARING WITH OTHER TOOLS IN SANITIZERS
IDENTIFICATIONS

Approach Type Sanitizers
Accuracy

(%)
Dictiona!2: Function 67 I
Dictiona!2: Function 91 I
Dictionary Function 138 63 .4 Ke�word matching
Dictionary Function 153 89.5 Semantic anal�sis Statement

Furthermore, it is inaccurate to measure effectiveness by
numbers alone, these sanitizers may not be effective. Therefore,
we used a manual audit to confirm and calculate the accuracy
of the identified methods. The base of the calculation is the
total number of sanitizers identified by each type of method,
and the numerator is the number of valid sanitizers. As we can
see, VuiChecker does not just do simple recognition but also
makes judgments about the validity of sanitizers through
semantic analysis, which leads to higher accuracy. The
traditional keyword matching method tends to identifY some
other functions containing keywords as sanitizers, so it has a
lower accuracy rate.

B. Vulnerability detection
To compare the effectiveness of vulnerability detection, we

compared VuiChecker with existing vulnerability detection
tools. The targets are the popular PHP CMS frameworks :
SeaCMS, DedeCMS [38] , CMSMS(CMS Made Simple) [39]
and YoudianCMS [40] . We collect historical vulnerabilities
from these four CMSs and use the detection and false positive
rates to compare their effectiveness. In addition, to test the
effectiveness of VuiChecker's rating function, we analysed the
results at the R3 level only and the results at R2 and RJ
together.

We define the vulnerability detection rate as R , the false
positive rate as F, the number of vulnerabilities in the method

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:24 UTC from IEEE Xplore. Restrictions apply.

CA
CV
HV

R ൌ CV/ HV

F ൌ CA െ CV / CA

781

detection result as CA , the number of successful method
verification as CV , and the total number of historical
vulnerabilities as HV, then:

R = CV/ HV
F = (CA - CV) / CA

(4)

(5)

The comparison of the vulnerability detection results is
shown in Table. II.

TABLE IL RESULTS OF COMPARING WITH OTHER TOOLS IN
VULNERABILITY DETECTION

Approaches or tools R (%) F (%)
Pixy [4] 90.25 47. 1 3

Rips [36] 75.78 55.59
Phos [l 3] 63 . 12 40 .92

VuiChecker (R3) 86 .39 17 .67
VuiChecker (R2&R3) 93 .67 34 .59

We can see from Table. II that Pixy and Rips, which simply
use dictionaries for sanitizers identification, have a high false
positive rate of vulnerability identification. Although these two
tools identifY more results, the overly simple sanitizers
identification affects the final analysis results. The Phos
method, which uses dictionaries and keyword matching, also
suffers from high false positives because the keyword
matching is too simple. In addition, Pixy focuses on accurate
analysis of alias propagation, so its vulnerability detection rate
is relatively high. VuiChecker, on the other hand, extends and
checks the sanitizers dictionary based on Pixy, combines it
with semantic automation to identifY sanitizers. Not only can it
ensure better vulnerability identification, but also reduce the
false positives . Finally, the hierarchy of the results in
VuiChecker is also effective. The results prove that the
hierarchy results can make manual auditing and vulnerability
exploitation more efficient for different users.

C. Vulnerabilities we found
To validate the effectiveness of VuiChecker in practice, we

tested the latest versions of SeaCMS, DedeCMS, CMSMS and
YoudianCMS. Through the testing, we found several new
suspicious tainted data propagation chains. We validated these
propagation chains to find unreported vulnerabilities.

Unfortunately, although we have taken as much time as
possible to analyse and submit vulnerabilities, as of the paper
submission, we have only four vulnerabilities that have
received a public disclosure notice with a vulnerability number.
Therefore, we are only presenting these four vulnerabilities at
this time and will add further vulnerabilities when they are
confirmed. Below is information of the vulnerabilities we
found in Table. III, the vulnerability IDs are from CNVD [4 1]
(China National Information Security Vulnerability Sharing
Platform) .

TABLE ill.

Vulnerability ID
CNVD-202 1 - 1 7446
CNVD-202 1 - 1 7447
CNVD-202 1 -26060
CNVD-202 1 -6796 1

THE VULNERABILITIES WE FOUND

Software Version Type
SeaCMS V2 1 0202 SQL injection
SeaCMS V2 1 0202 SQL injection
SeaCMS V2 1 0202 XSS

YoudianCMS 9 .2 XSS

7 8 1

VII. CONCLUSION AND FUTURE WORK

In this paper, unlike most researchers who have improved
taint analysis by constructing accurate alias propagation
analysis, we focus on sanitizers identification. We improve the
analysis of taint propagation chains by automatically
identifYing sanitizers. Our approach enables the construction of
more complete and accurate sets of sanitizers, thus improving
vulnerability detection. By comparing it with existing
vulnerability detection tools, we demonstrate that VuiChecker
has a lower false positive rate and better detection results. In
addition, in our practice, we have found some new suspicious
taint propagation chains in some popular PHP CMS
frameworks and have successfully identified four Oday
vulnerabilities .

However, there is still room for improvement in our work.
These will also be the direction of our future research.

(1) Try to identify more fine-grained data transformations:
In the approach we have built, we identifY data transformation
functions at the function level. However, there are more fine­
grained data transformations in Web applications, such as
splices, and character substitution by developers through "for"
loops. These statements also play a role as sanitizer in some
cases. We will therefore investigate this type of data
transformation in our subsequent work to identifY this type of
sanitizers.

(2) Determination of the validity of sanitizers: This paper
only discusses the identification of sanitizers, and the analysis
of the validity is more lacking. An invalid sanitizer can lead to
more false positives and missed positives in vulnerability
detection. Therefore, we will conduct a study on the
determination of the effectiveness of sanitizers in our
subsequent work, and then combine it with taint analysis to
achieve more accurate vulnerability detection.

(3) Extending the application of sanitizer identification
method: As mentioned at the beginning of the paper, the
significance of sanitizer identification lies more in its
application, so we will subsequently consider its further
application in program analysis and security management as
well.

ACKNOWLEDGMENT

Thanks to every member of the team who put in a lot of
effort into the research. In addition, our mentor, Professor
Wei ping Wen has provided us with a lot of valuable guidance.
This work is supported in part by the National Natural Science
Foundation of China (NSFC No. 6 1 8720 1 1) .

REFERENCES

[I] H. Yuan, L Zheng, L Dong, X. Peng, Y. Zhuang, and G. Deng,
"Research and Implementation of Security Vulnerability Detection in
Application System of WEB Static Source Code Analysis Based on
JAVA " pp. 444-452.

[2] G. Wassermann, and Z. Su, "Sound and precise analysis of Web
applications for injection vulnerabilities . " pp. 32-4 1 .

[3] N . Antunes, and M . J L A o . t . H . o . C . Vieira, "Defending against web
application vulnerabilities," voL 45, no. 02, pp. 66-72, 20 12 .

[4] N. Jovanovic, C . Kruegel, and E. Kirda, "Pixy: A static analysis tool for
detecting web application vulnerabilities . " pp. 6 pp. -263 .

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:24 UTC from IEEE Xplore. Restrictions apply.

782

[5] J. Park, I . Lim, and S. Ryu, "Battles with false positives in static analysis
of JavaScript Web applications in the wild. " pp. 6 1 -70.

[6] N. Jovanovic, C . Kruegel, and E. J. J. o. C . S . Kirda, "Static analysis for
detecting taint-style vulnerabilities in Web applications," vol . 1 8, no. 5 ,
pp. 861 -907, 20 10 .

[7] M. Sridharan, S . Artzi, M. Pistoia, S . Guarnieri, 0. Tripp, and R . Berg,
"F4F : taint analysis of framework-based Web applications. " pp. 1 053-
1 068 .

[8] J. Zhao, J. Qi , L. Zhou, and B . Cui, "Dynamic taint tracking of web
application based on static code analysis . " pp. 96- 1 0 1 .

[9] J . Zhang, C. Tian, Z. J . C . Duan, and Security, "An efficient approach
for taint analysis of android applications," vol. 1 04, pp. 1 02 1 6 1 , 202 1 .

[1 0] J . Galea, and D . Kroening, "The Taint Rabbit: Optimizing Generic Taint
Analysis with Dynamic Fast Path Generation. " pp. 622-636.

[1 1] N. Allen, F . Gauthier, and A. J. a. p . a. Jordan, "IFDS Taint Analysis
with Access Paths," 202 1 .

[12] J . Wang, Y . Wu, G . Zhou, Y . Yu, Z . Guo, and Y. Xiong, " Scaling static
taint analysis to industrial SOA applications: a case study at Alibaba. "
pp. 1 477- 1486.

[1 3] C. Skalka, S . Amir-Mohammadian, and S . J. J . o. C . S . Clark, "Maybe
tainted data: Theory and a case study," no. Preprint, pp . 1 -4 1 , 2020.

[14] K. Lu, A. Pakki, and Q. Wu, "Detecting missing-check bugs via
semantic-and context-aware criticalness and constraints inferences," in
28th {USENIX} Security Symposium ({USENIX} Security 1 9), 20 19 ,
pp . 1 769- 1786.

[1 5] S . Gan et al . , "Collafl : Path sensitive fuzzing," in 20 1 8 IEEE
Symposium on Security and Privacy (SP), 20 1 8 , pp. 679-696: IEEE.

[1 6] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, "Evaluating fuzz
testing," in Proceedings of the 20 1 8 ACM SIGSAC Conference on
Computer and Communications Security, 20 18 , pp. 2 1 23-2 1 38 .

[1 7] C . Song, B . Lee, K. Lu, W. Harris, T. Kim, and W. Lee, "Enforcing
Kernel Security Invariants with Data Flow Integrity, " in NDSS, 20 16 .

[1 8] C. W. Thomas Preston-Werner, P. J. Hyett "Github . " http://github.com/

[1 9] A. Youssef, and A. F. Shosha, "Quantitave dynamic taint analysis of
privacy leakage in android arabic apps . " pp. 1 -9 .

[20] B . Xiong, G. Xiang, T. Du, J. S . He, and S . Ji , " Static taint analysis
method for intent injection vulnerability in android applications . " pp. 1 6-
3 1 .

[2 1] M . Benz, E . K . Kristensen, L . Luo, N . P . Borges, E . Bodden, and A.
Zeller, "Heaps'n leaks: how heap snapshots improve Android taint
analysis . " pp. 1 06 1 - 1 072 .

782

[22] W. Huang, Y. Dong, and A. Milanova, "Type-based taint analysis for
Java Web applications. " pp. 1 40- 1 54 .

[23] P. Vogt, F . Nentwich, N. Jovanovic, E. Kirda, C . Kruegel, and G . Vigna,
"Cross site scripting prevention with dynamic data tainting and static
analysis . " p. 12 .

[24] M. I . Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C .
Rinard, "Information flow analysis of android applications in droidsafe . "
p . 1 1 0 .

[25] L. Wang, F . Ll, and L. J. J. o . S . Ll, "Principle and practice of taint
analysis," vol . 28, no. 4, pp. 860-882, 20 17 .

[26] E. J. Schwartz, T. Avgerinos, and D. Brumley, "All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask) . " pp. 3 1 7-33 1 .

[27] A . Askarov, and A . Sabelfeld, "Gradual release: UnifYing
declassification, encryption and key release policies . " pp. 207-22 1 .

[28] P . Saxena, D . Molnar, and B . Livshits, " SCRIPTGARD: automatic
context-sensitive sanitization for large-scale legacy Web applications. "
pp. 60 1 -6 14 .

[29] M. Samuel, P. Saxena, and D. Song, "Context-sensitive auto-sanitization
in web templating languages using type qualifiers . " pp. 587-600.

[30] D. Bates, A. Barth, and C . Jackson, "Regular expressions considered
harmful in client-side XSS filters . " pp. 9 1 - 1 00.

[3 1] P. Hooimeijer, B . Livshits, D. Molnar, P. Saxena, and M. Veanes, "Fast
and Precise Sanitizer Analysis with BEK. "

[32] R. Wood. "DVWA: Damn Vulnerable Web Application. "
https :// github. corn/ d i gin in ja/D VW A/b lob/master/vul nerabil iti es/xss _r/so
urce/impossible.php

[33] B. Livshits, M. Martin, and M. S. J. T. R. Lam, "SecuriFiy: Runtime
protection and recovery from Web application vulnerabilities," 2006 .

[34] S. Amir-Mohammadian, and C. Skalka, "In-depth enforcement of
dynamic integrity taint analysis . " pp. 43-56.

[35] B . Livshits, and S . J. A. S . N. Chong, "Towards fully automatic
placement of security sanitizers and declassifiers," vol. 48, no. I , pp.
3 85-398, 20 1 3 .

[36] "RIPS . " http://rips-scanner. sourceforge .net/

[37] "SeaCMS . " https ://www. seacms.net/

[38] "DesDev. "DedeCMS . " [28]http ://www.dedecms.com/

[39] "CMSMS : CMS Made Simple . " http ://www.cmsmadesimple.org/

[40] Y. S. T. Co. "YoudianCMS . " http ://www.youdiancms.com/

[4 1] Cert. "CNVD: China National Information Security Vulnerability
Sharing Platform. " https ://www.cnvd.org.cn/

Authorized licensed use limited to: Peking University. Downloaded on April 12,2022 at 08:00:24 UTC from IEEE Xplore. Restrictions apply.

